Qin Gong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5107560/publications.pdf

Version: 2024-02-01

1684188 1281871 22 124 5 11 citations h-index g-index papers 22 22 22 146 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Maximising the ability of stimulus-frequency otoacoustic emissions to predict hearing status and thresholds using machine-learning models. International Journal of Audiology, 2021, 60, 263-273.	1.7	4
2	Context-dependent Plasticity and Strength of Subcortical Encoding of Musical Sounds Independently Underlie Pitch Discrimination for Music Melodies. Neuroscience, 2021, 472, 68-89.	2.3	0
3	Objective Assessment System for Hearing Prediction Based on Stimulus-Frequency Otoacoustic Emissions. Trends in Hearing, 2021, 25, 233121652110596.	1.3	3
4	Estimating Hearing Thresholds From Stimulus-Frequency Otoacoustic Emissions. Trends in Hearing, 2020, 24, 233121652096005.	1.3	4
5	Evidence of both brainstem and auditory cortex involvement in categorical perception for Chinese lexical tones. NeuroReport, 2020, 31, 359-364.	1.2	5
6	Human Auditory-Frequency Tuning Is Sensitive to Tonal Language Experience. Journal of Speech, Language, and Hearing Research, 2020, 63, 4277-4288.	1.6	1
7	Frequency-Following Responses to Complex Tones at Different Frequencies Reflect Different Source Configurations. Frontiers in Neuroscience, 2019, 13, 130.	2.8	15
8	Musical training sharpens behavioral tuning more saliently than peripheral tuning. NeuroReport, 2019, 30, 1210-1214.	1,2	1
9	Background Suppression and its Relation to Foreground Processing of Speech Versus Non-speech Streams. Neuroscience, 2018, 373, 60-71.	2.3	4
10	Correlation between the frequency difference limen and an index based on principal component analysis of the frequency-following response of normal hearing listeners. Hearing Research, 2017, 344, 255-264.	2.0	15
11	Study on a Christian Chinese sample: sense of self-worth, well-being and locus of control. Mental Health, Religion and Culture, 2017, 20, 239-245.	0.9	3
12	Application of a single-flicker online SSVEP BCI for spatial navigation. PLoS ONE, 2017, 12, e0178385.	2.5	34
13	The influence of probe level on the tuning of stimulus frequency otoacoustic emissions and behavioral test in human. BioMedical Engineering OnLine, 2016, 15, 51.	2.7	2
14	An objective assessment method for frequency selectivity of the human auditory system. BioMedical Engineering OnLine, 2014, 13, 171.	2.7	11
15	Frequency difference beyond behavioral limen reflected by frequency following response of human auditory Brainstem. BioMedical Engineering OnLine, 2014, 13, 114.	2.7	7
16	Design and implementation of frequency-following response recording system. International Journal of Audiology, 2013, 52, 824-831.	1.7	4
17	A Normalized Beamforming Algorithm for Broadband Speech Using a Continuous Interleaved Sampling Strategy. IEEE Transactions on Audio Speech and Language Processing, 2012, 20, 868-874.	3.2	5
18	Chinese disyllables tone perceptual characteristics and the effect of stimulation rate on tone recognition in cochlear implants. , 2011, , .		1

#	Article	IF	CITATIONS
19	Parameter selection methods of delay and beamforming for cochlear implant speech enhancement. Acoustical Physics, 2011, 57, 542-550.	1.0	4
20	Time-Frequency Analysis of Transient Evoked Otoacoustic Emissions of Subjects with Auditory Neuropathy. International Conference on Bioinformatics and Biomedical Engineering: [proceedings] International Conference on Bioinformatics and Biomedical Engineering, 2010, , .	0.0	0
21	Clinical Application and AR Spectrum Analysis of Transient Evoked Otoacoustic Emission with or without Contralateral Acoustic Stimulation., 2009,,.		O
22	Methods to Reduce Stimulus Artifact in the Detection of Transient Evoked Otoacoustic Emissions (TEOAEs). , 0, , .		1