Chengbin Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5107203/publications.pdf

Version: 2024-02-01

77 papers	8,311 citations	46918 47 h-index	77 g-index
77	77	77	9991
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Direct electrodeposition of reduced graphene oxide on glassy carbon electrode and its electrochemical application. Electrochemistry Communications, 2011, 13, 133-137.	2.3	703
2	MoS ₂ Quantum Dot Growth Induced by S Vacancies in a ZnIn ₂ S ₄ Monolayer: Atomic-Level Heterostructure for Photocatalytic Hydrogen Production. ACS Nano, 2018, 12, 751-758.	7.3	500
3	Ag3PO4/Ti3C2 MXene interface materials as a Schottky catalyst with enhanced photocatalytic activities and anti-photocorrosion performance. Applied Catalysis B: Environmental, 2018, 239, 545-554.	10.8	481
4	Vertical single or few-layer MoS2 nanosheets rooting into TiO2 nanofibers for highly efficient photocatalytic hydrogen evolution. Applied Catalysis B: Environmental, 2015, 164, 1-9.	10.8	465
5	Direct Electrodeposition of Graphene Enabling the Oneâ€Step Synthesis of Graphene–Metal Nanocomposite Films. Small, 2011, 7, 1203-1206.	5.2	355
6	Efficient heavy metal removal from industrial melting effluent using fixed-bed process based on porous hydrogel adsorbents. Water Research, 2018, 131, 246-254.	5.3	291
7	Scalable one-step production of porous oxygen-doped g-C3N4 nanorods with effective electron separation for excellent visible-light photocatalytic activity. Applied Catalysis B: Environmental, 2018, 224, 1-9.	10.8	269
8	Selfâ€Optimization of the Active Site of Molybdenum Disulfide by an Irreversible Phase Transition during Photocatalytic Hydrogen Evolution. Angewandte Chemie - International Edition, 2017, 56, 7610-7614.	7.2	221
9	A highly efficient polyampholyte hydrogel sorbent based fixed-bed process for heavy metal removal in actual industrial effluent. Water Research, 2016, 89, 151-160.	5.3	213
10	Positioning cyanamide defects in g-C3N4: Engineering energy levels and active sites for superior photocatalytic hydrogen evolution. Applied Catalysis B: Environmental, 2018, 237, 24-31.	10.8	207
11	Efficient Removal of Heavy Metal Ions with An EDTA Functionalized Chitosan/Polyacrylamide Double Network Hydrogel. ACS Sustainable Chemistry and Engineering, 2017, 5, 843-851.	3.2	177
12	Photocatalytic wastewater purification with simultaneous hydrogen production using MoS 2 QD-decorated hierarchical assembly of ZnIn 2 S 4 on reduced graphene oxide photocatalyst. Water Research, 2017, 121, 11-19.	5.3	176
13	Silver phosphate-based Z-Scheme photocatalytic system with superior sunlight photocatalytic activities and anti-photocorrosion performance. Applied Catalysis B: Environmental, 2017, 208, 1-13.	10.8	174
14	Fast and efficient removal of As(III) from water by CuFe2O4 with peroxymonosulfate: Effects of oxidation and adsorption. Water Research, 2019, 150, 182-190.	5.3	156
15	Efficient removal of arsenic from groundwater using iron oxide nanoneedle array-decorated biochar fibers with high Fe utilization and fast adsorption kinetics. Water Research, 2019, 167, 115107.	5. 3	142
16	A double network gel as low cost and easy recycle adsorbent: Highly efficient removal of Cd(II) and Pb(II) pollutants from wastewater. Journal of Hazardous Materials, 2015, 300, 153-160.	6. 5	139
17	Fabrication of graphene films on TiO2 nanotube arrays for photocatalytic application. Carbon, 2011, 49, 5312-5320.	5.4	127
18	Fe ₂ P/reduced graphene oxide/Fe ₂ P sandwich-structured nanowall arrays: a high-performance non-noble-metal electrocatalyst for hydrogen evolution. Journal of Materials Chemistry A, 2017, 5, 8608-8615.	5 . 2	118

#	Article	IF	Citations
19	Sponge-like polysiloxane-graphene oxide gel as a highly efficient and renewable adsorbent for lead and cadmium metals removal from wastewater. Chemical Engineering Journal, 2015, 280, 275-282.	6.6	117
20	New double network hydrogel adsorbent: Highly efficient removal of Cd(II) and Mn(II) ions in aqueous solution. Chemical Engineering Journal, 2015, 275, 179-188.	6.6	117
21	Omnidirectional enhancement of photocatalytic hydrogen evolution over hierarchical "cauline leaf― nanoarchitectures. Applied Catalysis B: Environmental, 2016, 186, 88-96.	10.8	117
22	A three-dimensional graphitic carbon nitride belt network for enhanced visible light photocatalytic hydrogen evolution. Journal of Materials Chemistry A, 2016, 4, 19003-19010.	5.2	111
23	Sea-urchin-structure g-C3N4 with narrow bandgap (˜2.0 eV) for efficient overall water splitting under visible light irradiation. Applied Catalysis B: Environmental, 2019, 249, 275-281.	10.8	110
24	Rapid and efficient treatment of wastewater with high-concentration heavy metals using a new type of hydrogel-based adsorption process. Bioresource Technology, 2016, 219, 451-457.	4.8	106
25	Pb(<scp>ii</scp>), Cu(<scp>ii</scp>) and Cd(<scp>ii</scp>) removal using a humic substance-based double network hydrogel in individual and multicomponent systems. Journal of Materials Chemistry A, 2018, 6, 20110-20120.	5 . 2	106
26	1T-MoS2 nanosheets confined among TiO2 nanotube arrays for high performance supercapacitor. Chemical Engineering Journal, 2019, 366, 163-171.	6.6	105
27	The role of reactive oxygen species and carbonate radical in oxcarbazepine degradation via UV, UV/H2O2: Kinetics, mechanisms and toxicity evaluation. Water Research, 2018, 147, 204-213.	5.3	103
28	Engineering a FRET strategy to achieve a ratiometric two-photon fluorescence response with a large emission shift and its application to fluorescence imaging. Chemical Science, 2015, 6, 2360-2365.	3.7	101
29	Porous lithium ion sieves nanofibers: General synthesis strategy and highly selective recovery of lithium from brine water. Chemical Engineering Journal, 2020, 379, 122407.	6.6	95
30	Cellulose Tailored Anatase TiO ₂ Nanospindles in Three-Dimensional Graphene Composites for High-Performance Supercapacitors. ACS Applied Materials & Samp; Interfaces, 2016, 8, 12165-12175.	4.0	91
31	A bamboo-inspired hierarchical nanoarchitecture of Ag/CuO/TiO2 nanotube array for highly photocatalytic degradation of 2,4-dinitrophenol. Journal of Hazardous Materials, 2016, 313, 244-252.	6.5	89
32	Selective H2O2 production on N-doped porous carbon from direct carbonization of metal organic frameworks for electro-Fenton mineralization of antibiotics. Chemical Engineering Journal, 2020, 383, 123184.	6.6	88
33	Kinetics, pathways and toxicity evaluation of neonicotinoid insecticides degradation via UV/chlorine process. Chemical Engineering Journal, 2018, 346, 298-306.	6.6	87
34	Adsorption enhanced photocatalytic degradation sulfadiazine antibiotic using porous carbon nitride nanosheets with carbon vacancies. Chemical Engineering Journal, 2020, 382, 123017.	6.6	83
35	Efficient Photocatalytic Nitrogen Fixation: Enhanced Polarization, Activation, and Cleavage by Asymmetrical Electron Donation to Nĩ£½N Bond. Advanced Functional Materials, 2020, 30, 1906983.	7.8	82
36	The individual and Co-exposure degradation of benzophenone derivatives by UV/H2O2 and UV/PDS in different water matrices. Water Research, 2019, 159, 102-110.	5.3	79

#	Article	IF	CITATIONS
37	Controllable growth of graphene/Cu composite and its nanoarchitecture-dependent electrocatalytic activity to hydrazine oxidation. Journal of Materials Chemistry A, 2014, 2, 4580-4587.	5.2	77
38	Crystallization, cyanamide defect and ion induction of carbon nitride: Exciton polarization dissociation, charge transfer and surface electron density for enhanced hydrogen evolution. Applied Catalysis B: Environmental, 2019, 251, 206-212.	10.8	76
39	Static and continuous flow photoelectrocatalytic treatment of antibiotic wastewater over mesh of TiO2 nanotubes implanted with g-C3N4 nanosheets. Journal of Hazardous Materials, 2020, 384, 121248.	6.5	74
40	Deep Dehalogenation of Florfenicol Using Crystalline CoP Nanosheet Arrays on a Ti Plate via Direct Cathodic Reduction and Atomic H. Environmental Science & Environmental Science & 2019, 53, 11932-11940.	4.6	67
41	Destruction of phenicol antibiotics using the UV/H2O2 process: Kinetics, byproducts, toxicity evaluation and trichloromethane formation potential. Chemical Engineering Journal, 2018, 351, 867-877.	6.6	66
42	Flexible Ti ₃ C ₂ T <i>_x</i> @Al electrodes with Ultrahigh Areal Capacitance: In Situ Regulation of Interlayer Conductivity and Spacing. Advanced Functional Materials, 2018, 28, 1803196.	7.8	66
43	Vertically oriented reduced graphene oxide supported dealloyed palladium–copper nanoparticles for methanol electrooxidation. Journal of Power Sources, 2015, 278, 725-732.	4.0	61
44	Polyaniline-Reduced Graphene Oxide Hybrid Nanosheets with Nearly Vertical Orientation Anchoring Palladium Nanoparticles for Highly Active and Stable Electrocatalysis. ACS Applied Materials & Samp; Interfaces, 2016, 8, 169-176.	4.0	61
45	"Dark Deposition―of Ag Nanoparticles on TiO ₂ : Improvement of Electron Storage Capacity To Boost "Memory Catalysis―Activity. ACS Applied Materials & Interfaces, 2018, 10, 25350-25359.	4.0	61
46	Ultrafast and deep removal of arsenic in high-concentration wastewater: A superior bulk adsorbent of porous Fe2O3 nanocubes-impregnated graphene aerogel. Chemosphere, 2019, 222, 258-266.	4.2	56
47	Removal and Recovery of Uranium from Groundwater Using Direct Electrochemical Reduction Method: Performance and Implications. Environmental Science & Emp; Technology, 2019, 53, 14612-14619.	4.6	51
48	Ultrahigh Areal Capacitance of Flexible MXene Electrodes: Electrostatic and Steric Effects of Terminations. Chemistry of Materials, 2020, 32, 8257-8265.	3.2	50
49	Oneâ€Step Electrodeposition to Layerâ€byâ€Layer Graphene–Conductingâ€Polymer Hybrid Films. Macromolecular Rapid Communications, 2012, 33, 1780-1786.	2.0	45
50	Electrocatalytic dechlorination of halogenated antibiotics via synergistic effect of chlorine-cobalt bond and atomic H*. Journal of Hazardous Materials, 2018, 358, 294-301.	6.5	44
51	Hollow sea-urchin-shaped carbon-anchored single-atom iron as dual-functional electro-Fenton catalysts for degrading refractory thiamphenicol with fast reaction kinetics in a wide pH range. Chemical Engineering Journal, 2022, 427, 130996.	6.6	44
52	Enhanced arsenite removal from water by radially porous Fe-chitosan beads: Adsorption and H2O2 catalytic oxidation. Journal of Hazardous Materials, 2019, 373, 97-105.	6.5	43
53	Tuning the Oxidation State of Cu Electrodes for Selective Electrosynthesis of Ammonia from Nitrate. ACS Applied Materials & Eamp; Interfaces, 2021, 13, 52469-52478.	4.0	43
54	Deep oxidation and removal of arsenite in groundwater by rationally positioning oxidation and adsorption sites in binary Fe-Cu oxide/TiO2. Chemical Engineering Journal, 2018, 354, 825-834.	6.6	42

#	Article	IF	CITATIONS
55	Prednisolone degradation by UV/chlorine process: Influence factors, transformation products and mechanism. Chemosphere, 2018, 212, 56-66.	4.2	41
56	Palladium Nanoparticles Supported on Vertically Oriented Reduced Graphene Oxide for Methanol Electroâ€Oxidation. ChemSusChem, 2014, 7, 2907-2913.	3.6	40
57	Efficient Photocatalytic Hydrogen Evolution and CO ₂ Reduction: Enhanced Light Absorption, Charge Separation, and Hydrophilicity by Tailoring Terminal and Linker Units in g-C ₃ N ₄ . ACS Applied Materials & amp; Interfaces, 2020, 12, 19607-19615.	4.0	40
58	Rapid Analysis of Bisphenol A and Its Analogues in Food Packaging Products by Paper Spray Ionization Mass Spectrometry. Journal of Agricultural and Food Chemistry, 2017, 65, 4859-4865.	2.4	38
59	Hierarchical reduced graphene oxide supported dealloyed platinum–copper nanoparticles for highly efficient methanol electrooxidation. International Journal of Hydrogen Energy, 2017, 42, 6705-6712.	3.8	36
60	A new biodegradable polymer: PEGylated chitosan-g-PEI possessing a hydroxyl group at the PEG end. Journal of Polymer Research, 2008, 15, 181-185.	1.2	35
61	Electrochemical synthesis of polyaniline in surface-attached poly(acrylic acid) network, and its application to the electrocatalytic oxidation of ascorbic acid. Mikrochimica Acta, 2010, 168, 231-237.	2.5	35
62	Filter-membrane treatment of flowing antibiotic-containing wastewater through peroxydisulfate-coupled photocatalysis to reduce resistance gene and microbial inhibition during biological treatment. Water Research, 2021, 207, 117819.	5.3	35
63	Oxidative transformation of artificial sweetener acesulfame by permanganate: Reaction kinetics, transformation products and pathways, and ecotoxicity. Journal of Hazardous Materials, 2017, 330, 52-60.	6.5	34
64	Threeâ€Dimensional Nitrogenâ€Doped Reduced Graphene Oxide–Carbon Nanotubes Architecture Supporting Ultrafine Palladium Nanoparticles for Highly Efficient Methanol Electrooxidation. Chemistry - A European Journal, 2015, 21, 16631-16638.	1.7	32
65	Highly efficient As(III) removal in water using millimeter-sized porous granular MgO-biochar with high adsorption capacity. Journal of Hazardous Materials, 2021, 416, 125822.	6.5	32
66	Highly Efficient Continuous-Flow Electro-Fenton Treatment of Antibiotic Wastewater Using a Double-Cathode System. ACS Sustainable Chemistry and Engineering, 2021, 9, 1414-1422.	3.2	31
67	Boosting Electrocatalytic Oxygen Evolution: Superhydrophilic/Superaerophobic Hierarchical Nanoneedle/Microflower Arrays of Ce <i></i> Co _{3â€"<i>x</i>Co_{4D13, 42843-42851.}}	4.0	23
68	Electrocatalytic deep dehalogenation of florfenicol using Fe-doped CoP nanotubes array for blocking resistance gene expression and microbial inhibition during biochemical treatment. Water Research, 2021, 201, 117361.	5.3	19
69	Three-dimensional reduced graphene oxide–Mn 3 O 4 nanosheet hybrid decorated with palladium nanoparticles for highly efficient hydrogen evolution. International Journal of Hydrogen Energy, 2018, 43, 3369-3377.	3.8	18
70	Enhanced removal of As(III) by heterogeneous catalytic oxidation of As(III) on Fe-biochar fibers with H2O2 and hydroxylamine. Chemical Engineering Journal, 2022, 428, 131200.	6.6	18
71	Polyaniline/reduced graphene oxide nanosheets on TiO2 nanotube arrays as a high-performance supercapacitor electrode: Understanding the origin of high rate capability. Electrochimica Acta, 2021, 368, 137615.	2.6	16
72	Hollow Pt skim-sandwiched Cu spheres supported on reduced graphene oxide-carbon nanotube architecture for efficient methanol electrooxidation. International Journal of Hydrogen Energy, 2019, 44, 6886-6895.	3.8	14

#	Article	IF	CITATION
73	High areal capacitance of vanadium oxides intercalated Ti ₃ C ₂ MXene for flexible supercapacitors with high mass loading. Nanotechnology, 2020, 31, 165403.	1.3	13
74	Filterâ€membrane treatment of continuousâ€flow tetracycline through photocatalysisâ€assisted peroxydisulfate oxidation. AICHE Journal, 2022, 68, .	1.8	12
75	All-Biomass Double Network Gel: Highly Efficient Removal of Pb2+ and Cd2+ in Wastewater and Utilization of Spent Adsorbents. Journal of Polymers and the Environment, 2020, 28, 2669-2680.	2.4	8
76	TiO ₂ nanotube supported metallocene catalysts for the preparation of nanofiber, nanosheet, and floccule of polyethylene. Journal of Polymer Science, Part B: Polymer Physics, 2011, 49, 812-817.	2.4	7
77	High-efficiency and fast removal of As(III) from water by cerium oxide needles decorated macroporous carbon sponge. Chemical Engineering Journal, 2022, 446, 136740.	6.6	6