Dasa Gu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5106766/publications.pdf

Version: 2024-02-01

471509 552781 1,014 26 17 26 h-index citations g-index papers 46 46 46 1773 docs citations citing authors all docs times ranked

#	Article	IF	Citations
1	Reconciling Observed and Predicted Tropical Rainforest OH Concentrations. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	3.3	6
2	Effects of light on the emissions of biogenic isoprene and monoterpenes: A review. Atmospheric Pollution Research, 2022, 13, 101397.	3.8	6
3	Simulation of Isoprene Emission with Satellite Microwave Emissivity Difference Vegetation Index as Water Stress Factor in Southeastern China during 2008. Remote Sensing, 2022, 14, 1740.	4.0	2
4	The role of a suburban forest in controlling vertical trace gas and OH reactivity distributions – a case study for the Seoul metropolitan area. Faraday Discussions, 2021, 226, 537-550.	3.2	3
5	Contributions to OH reactivity from unexplored volatile organic compounds measured by PTR-ToF-MS $\hat{a}\in$ a case study in a suburban forest of the Seoul metropolitan area during the Korea $\hat{a}\in$ United States Air Quality Study (KORUS-AQ) 2016. Atmospheric Chemistry and Physics, 2021, 21, 6331-6345.	4.9	6
6	Modeling sensitivities of BVOCs to different versions of MEGAN emission schemes in WRF-Chem (v3.6) and its impacts over eastern China. Geoscientific Model Development, 2021, 14, 6155-6175.	3.6	17
7	A sampler for atmospheric volatile organic compounds by copter unmanned aerial vehicles. Atmospheric Measurement Techniques, 2019, 12, 3123-3135.	3.1	40
8	Intermediate-scale horizontal isoprene concentrations in the near-canopy forest atmosphere and implications for emission heterogeneity. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 19318-19323.	7.1	28
9	Evaluation of semi-static enclosure technique for rapid surveys of biogenic volatile organic compounds (BVOCs) emission measurements. Atmospheric Environment, 2019, 212, 1-5.	4.1	14
10	Urban pollution greatly enhances formation of natural aerosols over the Amazon rainforest. Nature Communications, 2019, 10, 1046.	12.8	131
11	Integration of airborne and ground observations of nitryl chloride in the Seoul metropolitan area and the implications on regional oxidation capacity during KORUS-AQ 2016. Atmospheric Chemistry and Physics, 2019, 19, 12779-12795.	4.9	24
12	Regional to Global Biogenic Isoprene Emission Responses to Changes in Vegetation From 2000 to 2015. Journal of Geophysical Research D: Atmospheres, 2018, 123, 3757-3771.	3.3	38
13	Biomass burning emission disturbances of isoprene oxidation in a tropical forest. Atmospheric Chemistry and Physics, 2018, 18, 12715-12734.	4.9	12
14	Leaf phenology as one important driver of seasonal changes in isoprene emissions in central Amazonia. Biogeosciences, 2018, 15, 4019-4032.	3.3	22
15	Airborne observations reveal elevational gradient in tropical forest isoprene emissions. Nature Communications, 2017, 8, 15541.	12.8	53
16	Airborne measurements of isoprene and monoterpene emissions from southeastern U.S. forests. Science of the Total Environment, 2017, 595, 149-158.	8.0	18
17	Sensitivity of biogenic volatile organic compounds to land surface parameterizations and vegetation distributions in California. Geoscientific Model Development, 2016, 9, 1959-1976.	3.6	34
18	Inverse modelling of NO _{<i>x</i>} emissions over eastern China: uncertainties due to chemical non-linearity. Atmospheric Measurement Techniques, 2016, 9, 5193-5201.	3.1	22

#	Article	IF	CITATION
19	Seasonality of isoprenoid emissions from a primary rainforest inÂcentral Amazonia. Atmospheric Chemistry and Physics, 2016, 16, 3903-3925.	4.9	52
20	Anthropogenic emissions of NO <i>_x</i> over China: Reconciling the difference of inverse modeling results using GOME-2 and OMI measurements. Journal of Geophysical Research D: Atmospheres, 2014, 119, 7732-7740.	3.3	45
21	Surface and free tropospheric sources of methanesulfonic acid over the tropical Pacific Ocean. Geophysical Research Letters, 2014, 41, 5239-5245.	4.0	10
22	Reduction in NO _{<i>x</i>} Emission Trends over China: Regional and Seasonal Variations. Environmental Science & Envir	10.0	97
23	Summertime photochemistry during CAREBeijing-2007: RO _x budgets and O ₃ formation. Atmospheric Chemistry and Physics, 2012, 12, 7737-7752.	4.9	150
24	Estimate of anthropogenic halocarbon emission based on measured ratio relative to CO in the Pearl River Delta region, China. Atmospheric Chemistry and Physics, 2011, 11, 5011-5025.	4.9	72
25	Sources, transport, and sinks of SO2 over the equatorial Pacific during the Pacific Atmospheric Sulfur Experiment. Journal of Atmospheric Chemistry, 2011, 68, 27-53.	3.2	21
26	Evidence of Reactive Aromatics As a Major Source of Peroxy Acetyl Nitrate over China. Environmental Science & Environmental Sc	10.0	84