

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5106766/publications.pdf Version: 2024-02-01

DASA CIL

#	Article	IF	CITATIONS
1	Summertime photochemistry during CAREBeijing-2007: RO _x budgets and O ₃ formation. Atmospheric Chemistry and Physics, 2012, 12, 7737-7752.	4.9	150
2	Urban pollution greatly enhances formation of natural aerosols over the Amazon rainforest. Nature Communications, 2019, 10, 1046.	12.8	131
3	Reduction in NO _{<i>x</i>} Emission Trends over China: Regional and Seasonal Variations. Environmental Science & Technology, 2013, 47, 12912-12919.	10.0	97
4	Evidence of Reactive Aromatics As a Major Source of Peroxy Acetyl Nitrate over China. Environmental Science & Technology, 2010, 44, 7017-7022.	10.0	84
5	Estimate of anthropogenic halocarbon emission based on measured ratio relative to CO in the Pearl River Delta region, China. Atmospheric Chemistry and Physics, 2011, 11, 5011-5025.	4.9	72
6	Airborne observations reveal elevational gradient in tropical forest isoprene emissions. Nature Communications, 2017, 8, 15541.	12.8	53
7	Seasonality of isoprenoid emissions from a primary rainforest inÂcentral Amazonia. Atmospheric Chemistry and Physics, 2016, 16, 3903-3925.	4.9	52
8	Anthropogenic emissions of NO <i>_x</i> over China: Reconciling the difference of inverse modeling results using GOME-2 and OMI measurements. Journal of Geophysical Research D: Atmospheres, 2014, 119, 7732-7740.	3.3	45
9	A sampler for atmospheric volatile organic compounds by copter unmanned aerial vehicles. Atmospheric Measurement Techniques, 2019, 12, 3123-3135.	3.1	40
10	Regional to Global Biogenic Isoprene Emission Responses to Changes in Vegetation From 2000 to 2015. Journal of Geophysical Research D: Atmospheres, 2018, 123, 3757-3771.	3.3	38
11	Sensitivity of biogenic volatile organic compounds to land surface parameterizations and vegetation distributions in California. Geoscientific Model Development, 2016, 9, 1959-1976.	3.6	34
12	Intermediate-scale horizontal isoprene concentrations in the near-canopy forest atmosphere and implications for emission heterogeneity. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 19318-19323.	7.1	28
13	Integration of airborne and ground observations of nitryl chloride in the Seoul metropolitan area and the implications on regional oxidation capacity during KORUS-AQ 2016. Atmospheric Chemistry and Physics, 2019, 19, 12779-12795.	4.9	24
14	Inverse modelling of NO _{<i>x</i>} emissions over eastern China: uncertainties due to chemical non-linearity. Atmospheric Measurement Techniques, 2016, 9, 5193-5201.	3.1	22
15	Leaf phenology as one important driver of seasonal changes in isoprene emissions in central Amazonia. Biogeosciences, 2018, 15, 4019-4032.	3.3	22
16	Sources, transport, and sinks of SO2 over the equatorial Pacific during the Pacific Atmospheric Sulfur Experiment. Journal of Atmospheric Chemistry, 2011, 68, 27-53.	3.2	21
17	Airborne measurements of isoprene and monoterpene emissions from southeastern U.S. forests. Science of the Total Environment, 2017, 595, 149-158.	8.0	18
18	Modeling sensitivities of BVOCs to different versions of MEGAN emission schemes in WRF-Chem (v3.6) and its impacts over eastern China. Geoscientific Model Development, 2021, 14, 6155-6175.	3.6	17

Dasa Gu

#	Article	IF	CITATIONS
19	Evaluation of semi-static enclosure technique for rapid surveys of biogenic volatile organic compounds (BVOCs) emission measurements. Atmospheric Environment, 2019, 212, 1-5.	4.1	14
20	Biomass burning emission disturbances of isoprene oxidation in a tropical forest. Atmospheric Chemistry and Physics, 2018, 18, 12715-12734.	4.9	12
21	Surface and free tropospheric sources of methanesulfonic acid over the tropical Pacific Ocean. Geophysical Research Letters, 2014, 41, 5239-5245.	4.0	10
22	Contributions to OH reactivity from unexplored volatile organic compounds measured by PTR-ToF-MS – a case study in a suburban forest of the Seoul metropolitan area during the Korea–United States Air Quality Study (KORUS-AQ) 2016. Atmospheric Chemistry and Physics, 2021, 21, 6331-6345.	4.9	6
23	Reconciling Observed and Predicted Tropical Rainforest OH Concentrations. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	3.3	6
24	Effects of light on the emissions of biogenic isoprene and monoterpenes: A review. Atmospheric Pollution Research, 2022, 13, 101397.	3.8	6
25	The role of a suburban forest in controlling vertical trace gas and OH reactivity distributions – a case study for the Seoul metropolitan area. Faraday Discussions, 2021, 226, 537-550.	3.2	3
26	Simulation of Isoprene Emission with Satellite Microwave Emissivity Difference Vegetation Index as Water Stress Factor in Southeastern China during 2008. Remote Sensing, 2022, 14, 1740.	4.0	2