Maria Dimarogona

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5106753/publications.pdf

Version: 2024-02-01

25 papers 1,168 citations

471061 17 h-index 24 g-index

27 all docs

27 docs citations

times ranked

27

1388 citing authors

#	Article	IF	CITATIONS
1	Structural and Functional Characterization of a Lytic Polysaccharide Monooxygenase with Broad Substrate Specificity. Journal of Biological Chemistry, 2015, 290, 22955-22969.	1.6	157
2	Interactions of a fungal lytic polysaccharide monooxygenase with \hat{l}^2 -glucan substrates and cellobiose dehydrogenase. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 5922-5927.	3.3	126
3	Lignin boosts the cellulase performance of a GH-61 enzyme from Sporotrichum thermophile. Bioresource Technology, 2012, 110, 480-487.	4.8	113
4	CELLULOSE DEGRADATION BY OXIDATIVE ENZYMES. Computational and Structural Biotechnology Journal, 2012, 2, e201209015.	1.9	76
5	Recombinant expression of thermostable processive MtEG5 endoglucanase and its synergism with MtLPMO from Myceliophthora thermophila during the hydrolysis of lignocellulosic substrates. Biotechnology for Biofuels, 2017, 10, 126.	6.2	76
6	Structural and functional studies of a Fusarium oxysporum cutinase with polyethylene terephthalate modification potential. Biochimica Et Biophysica Acta - General Subjects, 2015, 1850, 2308-2317.	1.1	68
7	Expression, characterization and structural modelling of a feruloyl esterase from the thermophilic fungus Myceliophthora thermophila. Applied Microbiology and Biotechnology, 2012, 94, 399-411.	1.7	61
8	A Middle-Aged Enzyme Still in Its Prime: Recent Advances in the Field of Cutinases. Catalysts, 2018, 8, 612.	1.6	60
9	Comparison of three seemingly similar lytic polysaccharide monooxygenases from Neurospora crassa suggests different roles in plant biomass degradation. Journal of Biological Chemistry, 2019, 294, 15068-15081.	1.6	59
10	Recalcitrant polysaccharide degradation by novel oxidative biocatalysts. Applied Microbiology and Biotechnology, 2013, 97, 8455-8465.	1.7	51
11	Marine-Derived Biocatalysts: Importance, Accessing, and Application in Aromatic Pollutant Bioremediation. Frontiers in Microbiology, 2017, 8, 265.	1.5	48
12	Functional expression of a thermophilic glucuronoyl esterase from Sporotrichum thermophile: identification of the nucleophilic serine. Applied Microbiology and Biotechnology, 2010, 87, 1765-1772.	1.7	47
13	The structure of a novel glucuronoyl esterase from <i>Myceliophthora thermophila</i> gives new insights into its role as a potential biocatalyst. Acta Crystallographica Section D: Biological Crystallography, 2013, 69, 63-73.	2.5	38
14	Structural and molecular dynamics studies of a C1 $\hat{a} \in \mathbf{o}$ xidizing lytic polysaccharide monooxygenase from <i>Heterobasidion irregulare</i> reveal amino acids important for substrate recognition. FEBS Journal, 2018, 285, 2225-2242.	2.2	35
15	A thermostable GH26 endo- \hat{l}^2 -mannanase from Myceliophthora thermophila capable of enhancing lignocellulose degradation. Applied Microbiology and Biotechnology, 2016, 100, 8385-8397.	1.7	31
16	Enzymatic synthesis of model substrates recognized by glucuronoyl esterases from Podospora anserina and Myceliophthora thermophila. Applied Microbiology and Biotechnology, 2014, 98, 5507-5516.	1.7	29
17	Thermophilic enzyme systems for efficient conversion of lignocellulose to valuable products: Structural insights and future perspectives for esterases and oxidative catalysts. Bioresource Technology, 2019, 279, 362-372.	4.8	29
18	Versatile Fungal Polyphenol Oxidase with Chlorophenol Bioremediation Potential: Characterization and Protein Engineering. Applied and Environmental Microbiology, 2018, 84, .	1.4	15

#	ARTICLE	IF	CITATION
19	The crystal structure of a <i>FusariumÂoxysporum</i> feruloyl esterase that belongs to the tannase family. FEBS Letters, 2020, 594, 1738-1749.	1.3	15
20	The structure of a GH10 xylanase from i>Fusarium oxysporum /i>reveals the presence of an extended loop on top of the catalytic cleft. Acta Crystallographica Section D: Biological Crystallography, 2012, 68, 735-742.	2.5	12
21	Backbone and side-chain 1H, 13C, and 15N chemical shift assignments for the apo-form of the lytic polysaccharide monooxygenase NcLPMO9C. Biomolecular NMR Assignments, 2016, 10, 277-280.	0.4	8
22	Unique features of the bifunctional GH30 from Thermothelomyces thermophila revealed by structural and mutational studies. Carbohydrate Polymers, 2021, 273, 118553.	5.1	7
23	Considerations Regarding Activity Determinants of Fungal Polyphenol Oxidases Based on Mutational and Structural Studies. Applied and Environmental Microbiology, 2021, 87, .	1.4	4
24	Exploring the complex map of insulin polymorphism: a novel crystalline form in the presence of <i>m </i> -cresol. Acta Crystallographica Section D: Structural Biology, 2020, 76, 366-374.	1.1	2
25	Structural Studies of a Fungal Polyphenol Oxidase with Application to Bioremediation of Contaminated Water. Proceedings (mdpi), 2020, 66, .	0.2	1