Andrew J Gooday

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5106076/publications.pdf Version: 2024-02-01

		28274	24982
212	13,783	55	109
papers	citations	h-index	g-index
010			7000
212	212	212	7909
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Exponential Decline of Deep-Sea Ecosystem Functioning Linked to Benthic Biodiversity Loss. Current Biology, 2008, 18, 1-8.	3.9	641
2	Environmental Influences on Regional Deep-Sea Species Diversity. Annual Review of Ecology, Evolution, and Systematics, 2001, 32, 51-93.	6.7	607
3	A response by benthic Foraminifera to the deposition of phytodetritus in the deep sea. Nature, 1988, 332, 70-73.	27.8	560
4	Effects of natural and human-induced hypoxia on coastal benthos. Biogeosciences, 2009, 6, 2063-2098.	3.3	525
5	Biological structures as a source of habitat heterogeneity and biodiversity on the deep ocean margins. Marine Ecology, 2010, 31, 21-50.	1.1	490
6	First insights into the biodiversity and biogeography of the Southern Ocean deep sea. Nature, 2007, 447, 307-311.	27.8	417
7	Benthic foraminifera (protista) as tools in deep-water palaeoceanography: Environmental influences on faunal characteristics. Advances in Marine Biology, 2003, 46, 1-90.	1.4	377
8	Deep-sea benthic foraminiferal species which exploit phytodetritus: Characteristic features and controls on distribution. Marine Micropaleontology, 1993, 22, 187-205.	1.2	368
9	Natural and human-induced hypoxia and consequences for coastal areas: synthesis and future development. Biogeosciences, 2010, 7, 1443-1467.	3.3	358
10	Deep-Sea Biodiversity in the Mediterranean Sea: The Known, the Unknown, and the Unknowable. PLoS ONE, 2010, 5, e11832.	2.5	321
11	The Biology of Deep-Sea Foraminifera: A Review of Some Advances and Their Applications in Paleoceanography. Palaios, 1994, 9, 14.	1.3	264
12	Major impacts of climate change on deep-sea benthic ecosystems. Elementa, 2017, 5, .	3.2	252
13	Biological Responses to Seasonally Varying Fluxes of Organic Matter to the Ocean Floor: A Review. Journal of Oceanography, 2002, 58, 305-332.	1.7	247
14	Foraminifera in the Arabian Sea oxygen minimum zone and other oxygen-deficient settings: taxonomic composition, diversity, and relation to metazoan faunas. Deep-Sea Research Part II: Topical Studies in Oceanography, 2000, 47, 25-54.	1.4	240
15	Meiofaunal foraminiferans from the bathyal Porcupine Seabight (northeast Atlantic): size structure, standing stock, taxonomic composition, species diversity and vertical distribution in the sediment. Deep-sea Research Part A, Oceanographic Research Papers, 1986, 33, 1345-1373.	1.5	238
16	The evolution of early Foraminifera. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 11494-11498.	7.1	227
17	Cenozoic deep-sea benthic foraminifers: Tracers for changes in oceanic productivity?. Geology, 1996, 24, 355.	4.4	210
18	Is the meiofauna a good indicator for climate change and anthropogenic impacts?. Marine Biodiversity, 2015, 45, 505-535.	1.0	209

#	Article	IF	CITATIONS
19	Biotic and Human Vulnerability to Projected Changes in Ocean Biogeochemistry over the 21st Century. PLoS Biology, 2013, 11, e1001682.	5.6	194
20	Insights into the abundance and diversity of abyssal megafauna in a polymetallic-nodule region in the eastern Clarion-Clipperton Zone. Scientific Reports, 2016, 6, 30492.	3.3	173
21	Temporal variability in living deep-sea benthic foraminifera: a review. Earth-Science Reviews, 1999, 46, 187-212.	9.1	168
22	A benthic foraminiferal proxy of pulsed organic matter paleofluxes. Marine Micropaleontology, 1994, 23, 89-99.	1.2	153
23	Characteristics of meiofauna in extreme marine ecosystems: a review. Marine Biodiversity, 2018, 48, 35-71.	1.0	153
24	Faunal responses to oxygen gradients on the Pakistan margin: A comparison of foraminiferans, macrofauna and megafauna. Deep-Sea Research Part II: Topical Studies in Oceanography, 2009, 56, 488-502.	1.4	148
25	Oxygen as a control on sea floor biological communities and their roles in sedimentary carbon cycling. Limnology and Oceanography, 2007, 52, 1698-1709.	3.1	146
26	Worldwide Analysis of Sedimentary DNA Reveals Major Gaps in Taxonomic Knowledge of Deep-Sea Benthos. Frontiers in Marine Science, 2016, 3, .	2.5	138
27	Foraminifera associated with phytodetritus deposits at a bathyal site in the northern Rockall Trough (NE Atlantic): seasonal contrasts and a comparison of stained and dead assemblages. Marine Micropaleontology, 2002, 46, 83-110.	1.2	134
28	Historical records of coastal eutrophication-induced hypoxia. Biogeosciences, 2009, 6, 1707-1745.	3.3	134
29	Bipolar gene flow in deepâ€sea benthic foraminifera. Molecular Ecology, 2007, 16, 4089-4096.	3.9	132
30	Selective feeding by benthic foraminifera on phytodetritus on the western Antarctic Peninsula shelf: evidence from fatty acid biomarker analysis. Marine Ecology - Progress Series, 2003, 262, 153-162.	1.9	127
31	Habitat heterogeneity and its influence on benthic biodiversity in oxygen minimum zones. Marine Ecology, 2010, 31, 125-147.	1.1	126
32	Epifaunal and shallow infaunal foraminiferal communities at three abyssal NE Atlantic sites subject to differing phytodetritus input regimes. Deep-Sea Research Part I: Oceanographic Research Papers, 1996, 43, 1395-1421.	1.4	124
33	The Role of Benthic Foraminifera in Deep-Sea Food Webs and Carbon Cycling. , 1992, , 63-91.		121
34	Live (Rose Bengal stained) and dead benthic foraminifera from the oxygen minimum zone of the Pakistan continental margin (Arabian Sea). Marine Micropaleontology, 2007, 62, 45-73.	1.2	116
35	The roles of habitat heterogeneity in generating and maintaining biodiversity on continental margins: an introduction. Marine Ecology, 2010, 31, 1-5.	1.1	116
36	Benthic Foraminiferal Biogeography: Controls on Global Distribution Patterns in Deep-Water Settings. Annual Review of Marine Science, 2012, 4, 237-262.	11.6	102

#	Article	IF	CITATIONS
37	ORGANIC-WALLED ALLOGROMIIDS: ASPECTS OF THEIR OCCURRENCE, DIVERSITY AND ECOLOGY IN MARINE HABITATS. Journal of Foraminiferal Research, 2002, 32, 384-399.	0.5	95
38	Possible effects of global environmental changes on Antarctic benthos: a synthesis across five major taxa. Ecology and Evolution, 2012, 2, 453-485.	1.9	88
39	Europe's Grand Canyon: Nazaré Submarine Canyon. Oceanography, 2009, 22, 46-57.	1.0	86
40	Temporal patterns among meiofauna and macrofauna taxa related to changes in sediment geochemistry at an abyssal NE Atlantic site. Progress in Oceanography, 2001, 50, 303-324.	3.2	85
41	Deep-sea benthic foraminiferal species diversity in the NE Atlantic and NW Arabian sea: a synthesis. Deep-Sea Research Part II: Topical Studies in Oceanography, 1998, 45, 165-201.	1.4	82
42	Benthic foraminiferal assemblages in Explorers Cove, Antarctica: A shallow-water site with deep-sea characteristics. Progress in Oceanography, 1996, 37, 117-166.	3.2	78
43	Introduction to ANDEEP (ANtarctic benthic DEEP-sea biodiversity: colonization history and recent) Tj ETQq1 1 (Oceanography, 2004, 51, 1457-1465.).784314 rg 1.4	gBT /Overlock 74
44	Ferromanganese nodule fauna in the Tropical North Pacific Ocean: Species richness, faunal cover and spatial distribution. Deep-Sea Research Part I: Oceanographic Research Papers, 2007, 54, 1912-1935.	1.4	73
45	The impact of seasonally deposited phytodetritus on epifaunal and shallow infaunal benthic foraminiferal populations in the bathyal northeast Atlantic: the assemblage response. Deep-sea Research Part A, Oceanographic Research Papers, 1990, 37, 1263-1283.	1.5	70
46	†Live' (stained) deep-sea benthic foraminiferans in the western Weddell Sea: trends in abundance, diversity and taxonomic composition along a depth transect. Deep-Sea Research Part II: Topical Studies in Oceanography, 2004, 51, 1571-1602.	1.4	70
47	Does Presence of a Mid-Ocean Ridge Enhance Biomass and Biodiversity?. PLoS ONE, 2013, 8, e61550.	2.5	68
48	The Whittard Canyon – A case study of submarine canyon processes. Progress in Oceanography, 2016, 146, 38-57.	3.2	68
49	Assessment of scientific gaps related to the effective environmental management of deep-seabed mining. Marine Policy, 2022, 138, 105006.	3.2	67
50	Testing the protozoan hypothesis for Ediacaran fossils: a developmental analysis of <i>Palaeopascichnus</i> . Palaeontology, 2011, 54, 1157-1175.	2.2	66
51	Possible early foraminiferans in post-Sturtian (716â^'635 Ma) cap carbonates. Geology, 2012, 40, 67-70.	4.4	66
52	Recent benthic foraminifera in the abyssal Northeast Atlantic Ocean; relation to phytodetrital inputs. Journal of Foraminiferal Research, 1997, 27, 85-92.	0.5	65
53	Simple Foraminifera Flourish at the Ocean's Deepest Point. Science, 2005, 307, 689-689.	12.6	63
54	The distribution and ecology of Bathysiphon filiformis Sars and B. major de Folin (Protista,) Tj ETQq0 0 0 rgBT	Overlock 1(0.5	0 Tf 50 67 Td 60

22, 129-146.

4

#	Article	IF	CITATIONS
55	Giant protists (xenophyophores, Foraminifera) are exceptionally diverse in parts of the abyssal eastern Pacific licensed for polymetallic nodule exploration. Biological Conservation, 2017, 207, 106-116.	4.1	60
56	Soft-shelled foraminifera in meiofaunal samples from the bathyal northeast Atlantic. Sarsia, 1986, 71, 275-287.	0.5	58
57	Paleodictyon nodosum: A living fossil on the deep-sea floor. Deep-Sea Research Part II: Topical Studies in Oceanography, 2009, 56, 1700-1712.	1.4	56
58	Direct observation of episodic growth in an abyssal xenophyophore (Protista). Deep-Sea Research Part I: Oceanographic Research Papers, 1993, 40, 2131-2143.	1.4	54
59	From the Surface to the Deep-Sea: Bacterial Distributions across Polymetallic Nodule Fields in the Clarion-Clipperton Zone of the Pacific Ocean. Frontiers in Microbiology, 2017, 8, 1696.	3.5	54
60	Larger agglutinated foraminifera of McMurdo Sound, Antarctica: Are Astrammina rara and Notodendrodes antarctikos allogromiids incognito?. Marine Micropaleontology, 1995, 26, 75-88.	1.2	53
61	The foraminiferan macrofauna from three North Carolina (USA) slope sites with contrasting carbon flux: a comparison with the metazoan macrofauna. Deep-Sea Research Part I: Oceanographic Research Papers, 2001, 48, 1709-1739.	1.4	53
62	Monothalamous foraminiferans and gromiids (Protista) from western Svalbard: A preliminary surveyPublished in collaboration with the University of Bergen and the Institute of Marine Research, Norway, and the Marine Biological Laboratory, University of Copenhagen, Denmark. Marine Biology Research, 2005, 1, 290-312.	0.7	52
63	Patterns of eukaryotic diversity from the surface to the deep-ocean sediment. Science Advances, 2022, 8, eabj9309.	10.3	52
64	Records of deep-sea rhizopod tests inhabited by metazoans in the North-east Atlantic. Sarsia, 1984, 69, 45-53.	0.5	51
65	Decadal-scale changes in shallow-infaunal foraminiferal assemblages at the Porcupine Abyssal Plain, NE Atlantic. Deep-Sea Research Part II: Topical Studies in Oceanography, 2010, 57, 1362-1382.	1.4	51
66	Large, deep-sea agglutinated Foraminifera; two differing kinds of organization and their possible ecological significance. Journal of Foraminiferal Research, 1997, 27, 278-291.	0.5	50
67	Foraminiferal faunal responses to monsoon-driven changes in organic matter and oxygen availability at 140 and 300m water depth in the NE Arabian Sea. Deep-Sea Research Part II: Topical Studies in Oceanography, 2009, 56, 403-421.	1.4	50
68	The Porcupine Abyssal Plain fixed-point sustained observatory (PAP-SO): variations and trends from the Northeast Atlantic fixed-point time-series. ICES Journal of Marine Science, 2012, 69, 776-783.	2.5	50
69	Key role of bacteria in the shortâ€ŧerm cycling of carbon at the abyssal seafloor in a low particulate organic carbon flux region of the eastern Pacific Ocean. Limnology and Oceanography, 2019, 64, 694-713.	3.1	50
70	Associations between living benthic foraminifera and dead tests of Syringammina fragilissima (Xenophyophorea) in the Darwin Mounds region (NE Atlantic). Deep-Sea Research Part I: Oceanographic Research Papers, 2004, 51, 1741-1758.	1.4	49
71	Impact of large-scale natural physical disturbance on the diversity of deep-sea North Atlantic nematodes. Marine Ecology - Progress Series, 2001, 214, 121-126.	1.9	49
72	Soft-walled, monothalamous benthic foraminiferans in the Pacific, Indian and Atlantic Oceans: aspects of biodiversity and biogeography. Deep-Sea Research Part I: Oceanographic Research Papers, 2004, 51, 33-53.	1.4	47

#	Article	IF	CITATIONS
73	A new monothalamous foraminiferan from 1000 to 6300m water depth in the Weddell Sea: morphological and molecular characterisation. Deep-Sea Research Part II: Topical Studies in Oceanography, 2004, 51, 1603-1616.	1.4	47
74	â€~Live' benthic foraminifera at an abyssal site in the equatorial Pacific nodule province: Abundance, diversity and taxonomic composition. Deep-Sea Research Part I: Oceanographic Research Papers, 2006, 53, 1406-1422.	1.4	47
75	Global genetic homogeneity in the deep-sea foraminiferan Epistominella exigua (Rotaliida:) Tj ETQq1 1 0.78431	4 rgBT /O\ 0.5	verlock 10 Tf 3
76	Modern deep-sea benthic foraminifera: a brief review of their morphology-based biodiversity and trophic diversity. Geological Society Special Publication, 2008, 303, 97-119.	1.3	45
77	Ecology and nutrition of the large agglutinated foraminiferan Bathysiphon capillare in the bathyal NE Atlantic: distribution within the sediment profile and lipid biomarker composition. Marine Ecology - Progress Series, 2002, 245, 69-82.	1.9	45
78	Temporal changes (1989–1999) in deep-sea metazoan meiofaunal assemblages on the Porcupine Abyssal Plain, NE Atlantic. Deep-Sea Research Part II: Topical Studies in Oceanography, 2010, 57, 1383-1395.	1.4	44
79	Genetic differentiation between Arctic and Antarctic monothalamous foraminiferans. Polar Biology, 2008, 31, 1205-1216.	1.2	43
80	Grazing of intertidal benthic foraminifera on bacteria: Assessment using pulse-chase radiotracing. Journal of Experimental Marine Biology and Ecology, 2011, 399, 25-34.	1.5	43
81	Megafaunal responses to strong oxygen gradients on the Pakistan margin of the Arabian Sea. Deep-Sea Research Part II: Topical Studies in Oceanography, 2009, 56, 472-487.	1.4	40
82	Protist diversity and function in the dark ocean – Challenging the paradigms of deep-sea ecology with special emphasis on foraminiferans and naked protists. European Journal of Protistology, 2020, 75, 125721.	1.5	40
83	Maintenance of abyssal benthic foraminifera under high pressure and low temperature: some preliminary results. Deep-Sea Research Part I: Oceanographic Research Papers, 1993, 40, 643-652.	1.4	39
84	Abyssal foraminifera attached to polymetallic nodules from the eastern Clarion Clipperton Fracture Zone: a preliminary description and comparison with North Atlantic dropstone assemblages. Marine Biodiversity, 2015, 45, 391-412.	1.0	39
85	The morphology, internal organization, and taxonomic position of Rhizammina algaeformis Brady, a large, agglutinated, deep-sea foraminifer. Journal of Foraminiferal Research, 1989, 19, 115-125.	0.5	37
86	Xenophyophores (Rhizaria, Foraminifera) from the Nazaré Canyon (Portuguese margin, NE Atlantic). Deep-Sea Research Part II: Topical Studies in Oceanography, 2011, 58, 2401-2419.	1.4	36
87	Environment, ecology, and potential effectiveness of an area protected from deep-sea mining (Clarion) Tj ETQq	1 1 9.7843	314 ggBT /Ove
88	Micro- and Nanoforaminifera from Abyssal Northeast Atlantic Sediments: A Preliminary Report. International Review of Hydrobiology, 1995, 80, 361-383.	0.6	35
89	Novel benthic foraminifera are abundant and diverse in an area of the abyssal equatorial Pacific licensed for polymetallic nodule exploration. Scientific Reports, 2017, 7, 45288.	3.3	35
90	DISTRIBUTION AND BIODIVERSITY OF STAINED MONOTHALAMOUS FORAMINIFERA FROM TEMPELFJORD, SVALBARD. Journal of Foraminiferal Research, 2007, 37, 93-106.	0.5	34

#	Article	IF	CITATIONS
91	Morphological and ecological parallels between sublittoral and abyssal foraminiferal species in the NE Atlantic: a comparison of Stainforthia fusiformis and Stainforthia sp Progress in Oceanography, 2001, 50, 261-283.	3.2	33
92	Conqueria laevis gen. and sp. nov., a new soft-walled, monothalamous foraminiferan from the deep Weddell Sea. Journal of the Marine Biological Association of the United Kingdom, 2004, 84, 919-924.	0.8	33
93	Influence of surface texture and microhabitat heterogeneity in structuring nodule faunal communities. Deep-Sea Research Part I: Oceanographic Research Papers, 2007, 54, 1936-1943.	1.4	32
94	A new genus of xenophyophores (Foraminifera) from Japan Trench: morphological description, molecular phylogeny and elemental analysis. Zoological Journal of the Linnean Society, 2009, 156, 455-464.	2.3	31
95	Trophic modes of large Antarctic Foraminifera: roles of carnivory, omnivory, and detritivory. Marine Ecology - Progress Series, 2008, 371, 155-164.	1.9	31
96	A note on the genetic similarity between shallow- and deep-water Epistominella vitrea (Foraminifera) in the Antarctic. Deep-Sea Research Part II: Topical Studies in Oceanography, 2007, 54, 1720-1726.	1.4	28
97	New organic-walled Foraminifera (Protista) from the ocean's deepest point, the Challenger Deep (western Pacific Ocean). Zoological Journal of the Linnean Society, 2008, 153, 399-423.	2.3	28
98	Abyssal foraminifers, including two new genera, encrusting the interior of Bathysiphon rusticus tubes. Deep-sea Research Part A, Oceanographic Research Papers, 1983, 30, 591-614.	1.5	27
99	Physical reworking by near-bottom flow alters the metazoan meiofauna of Fieberling Guyot (northeast Pacific). Deep-Sea Research Part I: Oceanographic Research Papers, 1999, 46, 2041-2052.	1.4	27
100	STRUCTURE, TAXONOMY AND ECOLOGY OF ASTRAMMINA TRIANGULARIS (EARLAND), AN ALLOGROMIID-LIKE AGGLUTINATED FORAMINIFER FROM EXPLORERS COVE, ANTARCTICA. Journal of Foraminiferal Research, 2002, 32, 364-374.	0.5	27
101	Giant protists (xenophyophores and komokiaceans) from the Clarion-Clipperton ferromanganese nodule field (eastern Pacific). Biology Bulletin Reviews, 2013, 3, 388-398.	0.9	27
102	Evidence for episodic recruitment in a small opheliid polychaete species from the abyssal NE Atlantic. Progress in Oceanography, 2001, 50, 285-301.	3.2	26
103	Living (Rose-Bengal-stained) benthic foraminiferal faunas along a strong bottom-water oxygen gradient on the Indian margin (Arabian Sea). Biogeosciences, 2015, 12, 5005-5019.	3.3	26
104	Macrofaunal abundance and community composition at lower bathyal depths in different branches of the Whittard Canyon and on the adjacent slope (3500 m; NE Atlantic). Deep-Sea Research Part I: Oceanographic Research Papers, 2015, 97, 29-39.	1.4	26
105	Abyssal hills: Influence of topography on benthic foraminiferal assemblages. Progress in Oceanography, 2016, 148, 44-55.	3.2	26
106	The biodiversity and biogeography of komokiaceans and other enigmatic foraminiferan-like protists in the deep Southern Ocean. Deep-Sea Research Part II: Topical Studies in Oceanography, 2007, 54, 1691-1719.	1.4	25
107	A large testate protist, Gromia sphaerica sp. nov. (Order Filosea), from the bathyal Arabian Sea. Deep-Sea Research Part II: Topical Studies in Oceanography, 2000, 47, 55-73.	1.4	24
108	Introduction to ANDEEP, summary and outlook. Deep-Sea Research Part II: Topical Studies in Oceanography, 2007, 54, 1645-1651.	1.4	24

1.4

19

#	Article	IF	CITATIONS
109	New genera and species of monothalamous Foraminifera from Balaclava and Kazach'ya Bays (Crimean) Tj ET(2q1 1 0.78 1.0	84314 rgBT
110	Bathysiphon rusticus de Folin, 1886 and Bathysiphon folini n. sp.; two large agglutinated foraminifers abundant in abyssal NE Atlantic epibenthic sledge samples. Journal of Foraminiferal Research, 1983, 13, 262-276.	0.5	23
111	An association between komokiacean foraminifers (Protozoa) and paludicelline ctenostomes (Bryozoa) from the abyssal Northeast Atlantic. Journal of Natural History, 1984, 18, 765-784.	0.5	23
112	The genusBathysiphon(Protista, Foraminiferida) in the northeast Atlantic: SEM observations on the wall structure of seven species. Journal of Natural History, 1989, 23, 591-611.	0.5	23
113	Recent Deep-Sea Agglutinated Foraminifera: A Brief Review. , 1990, , 271-304.		23
114	Xenophyophores (Protista, Rhizopoda) in box-core samples from the abyssal Northeast Atlantic Ocean, BIOTRANS area; their taxonomy, morphology, and ecology. Journal of Foraminiferal Research, 1991, 21, 197-212.	0.5	22
115	Title is missing!. Journal of Oceanography, 2001, 57, 377-384.	1.7	22
116	Soft-shelled benthic foraminifera from a hadal site (7800 m water depth) in the Atacama Trench (SE) Tj ETQq0 0	0 rgBT /Ov	verlock 10 Tf
117	Deep-sea surface-dwelling enteropneusts from the Mid-Atlantic Ridge: Their ecology, distribution and mode of life. Deep-Sea Research Part II: Topical Studies in Oceanography, 2013, 98, 374-387.	1.4	22
118	Xenophyophores (Protista, Foraminifera) from the Clarion-Clipperton Fracture Zone with description of three new species. Marine Biodiversity, 2015, 45, 581-593.	1.0	22
119	Ecological variables for deep-ocean monitoring must include microbiota and meiofauna for effective conservation. Nature Ecology and Evolution, 2021, 5, 27-29.	7.8	22
120	New xenophyophores (Protista) from the bathyal and abyssal north-east Atlantic Ocean. Journal of Natural History, 1988, 22, 413-434.	0.5	21
121	Five new species and two new genera of xenophyophores (Foraminifera: Rhizaria) from part of the abyssal equatorial Pacific licensed for polymetallic nodule exploration. Zoological Journal of the Linnean Society, 2018, 183, 723-748.	2.3	20
122	The genusBathysiphon(Protista, Foraminiferida) in the NE Atlantic: revision of some species described by de Folin (1886). Journal of Natural History, 1988, 22, 71-93.	0.5	19

125	Uptake of algal carbon and the likely synthesis of an "essential" fatty acid by <i>Uvigerina</i> ex. gr. <i>semiornata</i> (Foraminifera) within the Pakistan margin oxygen minimum zone: evidence from fatty acid biomarker and &:lt;sup&:gt;13&:lt;/sup&:gt;C tracer experiments. Biogeosciences. 2014. 11. 3729-3738.	3.3	19
126	A New Allogromiid Genus (Rhizopoda: Foraminiferida) from the Vellar Estuary, Bay of Bengal. Journal of Micropalaeontology, 1992, 11, 233-239.	3.6	18

The taxonomy and ecology of Crithionina delacai sp. nov., and abundant large agglutinated foraminifer from Explorers Cove, Antarctica. Journal of Foraminiferal Research, 1995, 25, 290-298.

Large organic-walled Protista (Gromia) in the Arabian Sea: Density, diversity, distribution and ecology. Deep-Sea Research Part II: Topical Studies in Oceanography, 2009, 56, 422-433.

124

#	Article	IF	CITATIONS
127	The influence of productivity on abyssal foraminiferal biodiversity. Marine Biodiversity, 2012, 42, 415-431.	1.0	18
128	Trawled megafaunal invertebrate assemblages from bathyal depth of the Mid-Atlantic Ridge (48°–54°N). Deep-Sea Research Part II: Topical Studies in Oceanography, 2013, 98, 326-340.	1.4	18
129	Micro-CT 3D imaging reveals the internal structure of three abyssal xenophyophore species (Protista,) Tj ETQq1	1 0,78431 3.3	4 rgBT /Overl
130	Diversity and spatial patterns of foraminiferal assemblages in the eastern Clarion–Clipperton zone (abyssal eastern equatorial Pacific). Deep-Sea Research Part I: Oceanographic Research Papers, 2019, 149, 103036.	1.4	18
131	The Biodiversity and Distribution of Abyssal Benthic Foraminifera and Their Possible Ecological Roles: A Synthesis Across the Clarion-Clipperton Zone. Frontiers in Marine Science, 2021, 8, .	2.5	18
132	Vellaria zucchellii sp. nov. a new monothalamous foraminifer from Terra Nova Bay, Antarctica. Antarctic Science, 2004, 16, 307-312.	0.9	17
133	The Second Species of Gromia (Protista) from the Deep Sea: its Natural History and Association with the Pakistan Margin Oxygen Minimum Zone. Protist, 2005, 156, 113-126.	1.5	17
134	A new genus and two new species of saccamminid foraminiferans (Protista, Rhizaria) from the deep Southern Ocean. Zootaxa, 2009, 2096, 9-22.	0.5	17
135	A minute new species of <i>Saccammina</i> (monothalamous Foraminifera;) Tj ET	Qg1_1 0.7	′84314 rgBT /
136	Ontogenetic effects on stable carbon and oxygen isotopes in tests of live (Rose Bengal stained) benthic foraminifera from the Pakistan continental margin. Marine Micropaleontology, 2010, 76, 92-103.	1.2	17
137	Foraminiferal biodiversity associated with cold-water coral carbonate mounds and open slope of SE Rockall Bank (Irish continental margin—NE Atlantic). Deep-Sea Research Part I: Oceanographic Research Papers, 2012, 59, 54-71.	1.4	17
138	The Contribution of Fine Sieve Fractions (63–150 μm) to Foraminiferal Abundance and Diversity in an Area of the Eastern Pacific Ocean Licensed for Polymetallic Nodule Exploration. Frontiers in Marine Science, 2019, 6, .	2.5	17
139	Biodiversity and distribution of the genus Gromia (Protista, Rhizaria) in the deep Weddell Sea (Southern Ocean). Polar Biology, 2011, 34, 69-81.	1.2	16
140	Review: Freshwater and Soil Foraminifera – A Story of Long-Forgotten Relatives. Journal of Foraminiferal Research, 2021, 51, 318-331.	0.5	16
141	Xenophyophores (Protista) including two new species, from two abyssal sites in the Northeast Atlantic Ocean. Journal of Foraminiferal Research, 1996, 26, 193-208.	0.5	15
142	Dressing up for the deep: agglutinated protists adorn an irregular urchin. Journal of the Marine Biological Association of the United Kingdom, 2001, 81, 881-882.	0.8	15
143	New and little-known Komokiacea (Foraminifera) from the bathyal and abyssal Weddell Sea and adjacent areas. Zoological Journal of the Linnean Society, 2007, 151, 219-251.	2.3	15
144	Meiobenthos of the Oxic/Anoxic Interface in the Southwestern Region of the Black Sea: Abundance and Taxonomic Composition. Cellular Origin and Life in Extreme Habitats, 2012, , 369-401.	0.3	15

#	Article	IF	CITATIONS
145	Agglutination of benthic foraminifera in relation to mesoscale bathymetric features in the abyssal NE Atlantic (Porcupine Abyssal Plain). Marine Micropaleontology, 2016, 123, 15-28.	1.2	15
146	Giant, highly diverse protists in the abyssal Pacific: vulnerability to impacts from seabed mining and potential for recovery. Communicative and Integrative Biology, 2020, 13, 189-197.	1.4	15
147	Large, enigmatic foraminiferan-like protists in the eastern part of the Clarion-Clipperton Fracture Zone (abyssal north-eastern subequatorial Pacific): biodiversity and vertical distribution in the sediment. Marine Biodiversity, 2012, 42, 311-327.	1.0	14
148	New and poorly known benthic foraminifera (Protista, Rhizaria) inhabiting the shells of planktonic foraminifera on the bathyal Mid-Atlantic Ridge. Marine Biology Research, 2013, 9, 447-461.	0.7	14
149	Benthic polychaete diversity patterns and community structure in the Whittard Canyon system and adjacent slope (NE Atlantic). Deep-Sea Research Part I: Oceanographic Research Papers, 2015, 106, 42-54.	1.4	14
150	New species of the xenophyophore genus Aschemonella (Rhizaria: Foraminifera) from areas of the abyssal eastern Pacific licensed for polymetallic nodule exploration. Zoological Journal of the Linnean Society, 2018, 182, 479-499.	2.3	14
151	Xenophyophores (Rhizaria, Foraminifera), including four new species and two new genera, from the western Clarion-Clipperton Zone (abyssal equatorial Pacific). European Journal of Protistology, 2020, 75, 125715.	1.5	14
152	The genus Bathysiphon (Protista, Foraminiferida) in the north-east Atlantic: a neotype for B. filiformis G.O. & M. Sars, 1872 and the description of a new species. Journal of Natural History, 1988, 22, 95-105.	0.5	13
153	Microforaminifera — Perspective on a Neglected Group of Foraminifera. Archiv Für Protistenkunde, 1993, 143, 271-284.	0.8	13
154	The morphology and ecology of an abundant new komokiacean mudball (Komokiacea, Foraminiferida) from the bathyal and abyssal NE Atlantic. Journal of Foraminiferal Research, 1994, 24, 214-225.	0.5	13
155	BENTHIC FORAMINIFERAL TRENDS IN RELATION TO AN ORGANIC ENRICHMENT GRADIENT ON THE CONTINENTAL SLOPE (850 M WATER DEPTH) OFF NORTH CAROLINA (USA). Journal of Foraminiferal Research, 2006, 36, 34-43.	0.5	13
156	The trophic and metabolic pathways of foraminifera in the Arabian Sea: evidence from cellular stable isotopes. Biogeosciences, 2015, 12, 1781-1797.	3.3	13
157	Radiolarian tests as microhabitats for novel benthic foraminifera: Observations from the abyssal eastern equatorial Pacific (Clarion–Clipperton Fracture Zone). Deep-Sea Research Part I: Oceanographic Research Papers, 2015, 103, 73-85.	1.4	13
158	Relationship between â€~live' and dead benthic foraminiferal assemblages in the abyssal NE Atlantic. Deep-Sea Research Part I: Oceanographic Research Papers, 2017, 121, 190-201.	1.4	13
159	Abundance and morphology of Paleodictyon nodosum, observed at the Clarion-Clipperton Zone. Marine Biodiversity, 2017, 47, 265-269.	1.0	13
160	Bathyal benthic megafauna from the Midâ€Atlantic Ridge in the region of the Charlie-Gibbs fracture zone based on remotely operated vehicle observations. Deep-Sea Research Part I: Oceanographic Research Papers, 2019, 145, 1-12.	1.4	13
161	Megafaunal Ecology of the Western Clarion Clipperton Zone. Frontiers in Marine Science, 2021, 8, .	2.5	13
162	A THEME ISSUE ON THE BIOLOGY AND BIODIVERSITY OF 'ALLOGROMIID' FORAMINIFERA. Journal of Foraminiferal Research, 2002, 32, 331-333.	0.5	12

#	Article	IF	CITATIONS
163	Soft-shelled monothalamous foraminifera at an intertidal site on the south coast of England. Journal of Micropalaeontology, 2004, 23, 135-137.	3.6	12
164	Tinogullmia lukyanovae sp. nov.—a monothalamous, organic-walled foraminiferan from the coastal Black Sea. Journal of the Marine Biological Association of the United Kingdom, 2006, 86, 43-49.	0.8	12
165	Traces of dissolved particles, including coccoliths, in the tests of agglutinated foraminifera from the Challenger Deep (10,897m water depth, western equatorial Pacific). Deep-Sea Research Part I: Oceanographic Research Papers, 2010, 57, 239-247.	1.4	12
166	The genus Rhabdammina in the Northeast Atlantic; a new species, a redescription of R. major de Folin, 1887, and some speculations on species relationships. Journal of Foraminiferal Research, 1986, 16, 150-160.	0.5	11
167	The monothalamous foraminiferan <i>Tinogullmia</i> in the Black Sea. Journal of Micropalaeontology, 2005, 24, 191-192.	3.6	11
168	Three new species of deep-sea Gromia (Protista, Rhizaria) from the bathyal and abyssal Weddell Sea, Antarctica. Zoological Journal of the Linnean Society, 0, 157, 451-469.	2.3	11
169	Xenophyophores (Rhizaria, Foraminifera) from the Russian license area of the Clarion-Clipperton Zone (eastern equatorial Pacific), with the description of three new species. Marine Biodiversity, 2017, 47, 299-306.	1.0	11
170	Foraminiferal faunal responses to monsoon-driven changes in organic matter and oxygen availability at 140 and 300m water depth in the NE Arabian Sea. Deep-Sea Research Part II: Topical Studies in Oceanography, 2009, 56, 403-421.	1.4	11
171	The sinking velocities of some halocyprid ostracods. Journal of Experimental Marine Biology and Ecology, 1975, 19, 105-116.	1.5	10
172	High diversity of deep-sea Gromia from the Arabian Sea revealed by small subunit rDNA sequence analysis. Marine Biology, 2006, 148, 769-777.	1.5	10
173	Intracellular mineral grains in the xenophyophore Nazareammina tenera (Rhizaria, Foraminifera) from the Nazaré Canyon (Portuguese margin, NE Atlantic). Deep-Sea Research Part I: Oceanographic Research Papers, 2011, 58, 1189-1195.	1.4	10
174	Molecular and morphological diversity of monothalamous foraminifera from South Georgia and the Falkland Islands: Description of four new species. European Journal of Protistology, 2022, 85, 125909.	1.5	10
175	A new large agglutinated foraminifer (Arboramminidae n. fam.) from an oligotrophic site in the abyssal Northeast Atlantic. Journal of Foraminiferal Research, 1994, 24, 149-157.	0.5	9
176	Precambrian Biota: Protistan Origin of Trace Fossils?. Current Biology, 2009, 19, R28-R30.	3.9	9
177	Basal foraminifera and gromiids (Protista) at the HÃ¥kon-Mosby Mud Volcano (Barents Sea slope). Marine Biodiversity, 2013, 43, 205-225.	1.0	9
178	Macrofaunal colonization across the Indian margin oxygen minimum zone. Biogeosciences, 2013, 10, 7161-7177.	3.3	9
179	Xenophyophores (Rhizaria, Foraminifera) from the Eastern Clarion-Clipperton Zone (equatorial) Tj ETQq1 1 0.784	4314 rgBT 1.5	/Oyerlock 10
180	The enigmatic, deepâ€sea, organicâ€walled genera <i>Chitinosiphon, Nodellum</i> and <i>Resigella</i> (Protista, Foraminifera): A taxonomic reâ€evaluation. Systematics and Biodiversity, 2008, 6, 385-404.	1.2	8

#	Article	IF	CITATIONS
181	The ecology and biogeography of Discospirina tenuissima (Foraminifera) in the Atlantic and Indian Oceans. Deep-Sea Research Part II: Topical Studies in Oceanography, 2013, 98, 301-314.	1.4	8
182	Cenozoic climatic changes drive evolution and dispersal of coastal benthic foraminifera in the Southern Ocean. Scientific Reports, 2021, 11, 19869.	3.3	8
183	Siliceous scales of filose-amoebae (Pompholyxophryidae, Rotosphaerida) from deep Southern Ocean sediments, including first records for the Southern Hemisphere. Polar Biology, 2007, 30, 945-950.	1.2	7
184	Two new genera and species of the monothalamous foraminifera from coastal waters of the Black Sea. Marine Biodiversity, 2013, 43, 473-479.	1.0	7
185	Agglutinated foraminifera (superfamily Hormosinacea) across the Indian margin oxygen minimum zone (Arabian Sea). Marine Biodiversity, 2014, 44, 5-25.	1.0	7
186	Scientific and budgetary tradeâ€offs between morphological and molecular methods for deepâ€sea biodiversity assessment. Integrated Environmental Assessment and Management, 2022, 18, 655-663.	2.9	7
187	Distribution of Planktonic Ostracoda (Halocyprididae) in the North Adriatic With the Description of a New Subspecies, Conchoecia Porrecta Adriatica. Crustaceana, 1977, 32, 139-154.	0.3	6
188	Genetic Diversity and Environmental Preferences of Monothalamous Foraminifers Revealed through Clone Analysis of Environmental Small-Subunit Ribosomal DNA Sequences. Journal of Foraminiferal Research, 2013, 43, 3-13.	0.5	6
189	Eyes of the Deep-sea Floor: The Integrative Taxonomy of the Foraminiferal Genus Vanhoeffenella. Protist, 2018, 169, 235-267.	1.5	6
190	Taxon-rich transcriptomics supports higher-level phylogeny and major evolutionary trends in Foraminifera. Molecular Phylogenetics and Evolution, 2022, 174, 107546.	2.7	6
191	The organic-walled genera Resigella and Conicotheca (Protista, Foraminifera) at two Arctic deep-sea sites (North Pole and Barents Sea), including the description of a new species of Resigella. Marine Biodiversity, 2010, 40, 33-44.	1.0	5
192	Formation of agglutinated cysts by the foraminiferan Sphaeroidina bulloides on the Porcupine Abyssal Plain (NE Atlantic). Marine Biodiversity, 2016, 46, 747-749.	1.0	5
193	Loricifera inhabiting spherical agglutinated structures in the abyssal eastern equatorial Pacific nodule fields. Marine Biodiversity, 2019, 49, 2455-2466.	1.0	5
194	Megafauna of the German exploration licence area for seafloor massive sulphides along the Central and South East Indian Ridge (Indian Ocean). Biodiversity Data Journal, 2021, 9, e69955.	0.8	5
195	Organic and siliceous protistan scales in north-east Atlantic abyssal sediments. Journal of the Marine Biological Association of the United Kingdom, 2006, 86, 679-688.	0.8	4
196	Basal monothalamous and pseudochambered benthic foraminifera associated with planktonic foraminiferal shells and mineral grains from the Porcupine Abyssal Plain, NE Atlantic. Marine Biodiversity, 2015, 45, 357-369.	1.0	4
197	Taxonomic composition and distribution of soft-walled monothalamid foraminifera in the area of Zernov's <i>Phyllophora</i> Field (NW Black Sea). Marine Biology Research, 2016, 12, 640-646.	0.7	4
198	Macrofaunal nematodes of the deep Whittard Canyon (<scp>NE</scp> Atlantic): assemblage characteristics and comparison with polychaetes. Marine Ecology, 2017, 38, e12408.	1.1	4

#	Article	IF	CITATIONS
199	New species of Gromia (Protista, Rhizaria) from South Georgia and the Falkland Islands. Polar Biology, 2022, 45, 647-666.	1.2	3
200	<i>Hyperammina micaceus</i> sp. nov.: a new foraminiferan species (Protista) from the Porcupine Abyssal Plain, northeast Atlantic. Journal of Micropalaeontology, 2004, 23, 171-179.	3.6	2
201	Three new species of Gromia (Protista, Rhizaria) from western Greenland fjords. Polar Biology, 2021, 44, 1037-1053.	1.2	2
202	Associations between living benthic foraminifera and dead tests of Syringammina fragilissima (Xenophyophorea) in the Darwin Mounds region (NE Atlantic). Deep-Sea Research Part I: Oceanographic Research Papers, 2004, 51, 1741-1758.	1.4	2
203	New species of Leptohalysis (Rhizaria, Foraminifera) from an extreme hadal site in the western Pacific Ocean. Zootaxa, 2009, 2059, 23-32.	0.5	2
204	MEMORIAL TO MARTIN DAVID BRASIER (1947–2014). Journal of Foraminiferal Research, 2016, 46, 221-223.	0.5	2
205	A new â€~saccamminid' genus (Rhizaria: Foraminifera), from 4400 m water depth in the Nazaré Canyon (N	E) Ţj_ETQq	1 1 0.78431 1
206	First record of a Xenophyophore (Rhizaria: Foraminifera) on the Chilean margin. Zootaxa, 2018, 4455, 589.	0.5	1
207	The chemical composition of a new "mica sandwich―foraminiferal species from the East Coast of Korea: <i>Capsammina crassa</i> sp. nov PeerJ, 2019, 7, e6642.	2.0	1
208	Discovery of Paleodictyon in the Indian Ocean. Marine Biodiversity, 2021, 51, 1.	1.0	1
209	Some recent advances in the study of deep-sea foraminiferal biology and their palaeoecological significance. The Paleontological Society Special Publications, 1992, 6, 111-111.	0.0	0
210	2012 Cushman Award to Khadyzhat M. Saidova. Journal of Foraminiferal Research, 2013, 43, 1-2.	0.5	0
211	Soft-walled monothalamids (Rhizaria: foraminifera) of the Crimean shelf (Black Sea): taxonomic composition and inter-regional patterns of species diversity and distribution. Marine Biology Research, 2019, 15, 36-48.	0.7	0
212	New observations on test architecture and construction of <i>Jullienella foetida</i> Schlumberger, 1890, the largest shallow-water agglutinated foraminifer in modern oceans. PeerJ, 2022, 10, e12884.	2.0	0