
Lin Zhong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5106053/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	High-surface-area mesoporous silica-yttria-zirconia ceramic materials prepared by coprecipitation method ― the role of silicon. Ceramics International, 2022, 48, 21951-21960.	4.8	3
2	Pd-Based Catalyst on Alumina with Perovskite (La0.67Fe0.83Cu0.17O3) to Reduce Ammonia Content in Natural Gas Exhaust. Catalysis Letters, 2021, 151, 3582-3591.	2.6	2
3	Tuning the interactions among Ce, Pd and Rh over Ce-modified Pd-Rh three-way catalyst for exhaust treatment of natural gas vehicles. Journal of Environmental Chemical Engineering, 2021, 9, 105570.	6.7	5
4	A novel strategy to design PtPd bimetallic catalysts for efficient methane combustion. Catalysis Communications, 2020, 135, 105900.	3.3	10
5	New insights into the role of Pd-Ce interface for methane activation on monolithic supported Pd catalysts: A step forward the development of novel PGM Three-Way Catalysts for natural gas fueled engines. Applied Catalysis B: Environmental, 2020, 264, 118475.	20.2	59
6	Pd supported on alumina modified by phosphate: Highly phosphorus-resistant three-way catalyst for natural gas vehicles. Journal of the Taiwan Institute of Chemical Engineers, 2020, 115, 108-116.	5.3	8
7	Insights into the role of Pt on Pd catalyst stabilized by magnesia-alumina spinel on gama-alumina for lean methane combustion: Enhancement of hydrothermal stability. Molecular Catalysis, 2020, 496, 111185.	2.0	7
8	Particle Size Effects in Stoichiometric Methane Combustion: Structure–Activity Relationship of Pd Catalyst Supported on Gamma-Alumina. ACS Catalysis, 2020, 10, 10339-10349.	11.2	84
9	Methane Combustion with a Pd–Pt Catalyst Stabilized by Magnesia–Alumina Spinel in a High-Humidity Feed. Industrial & Engineering Chemistry Research, 2020, 59, 11170-11176.	3.7	9
10	Pd Supported on Alumina Using CePO ₄ as an Additive: Phosphorus-Resistant Catalyst for Emission Control in Vehicles Fueled by Natural Gas. Industrial & Engineering Chemistry Research, 2020, 59, 6497-6505.	3.7	10
11	Mesoporous yttria-zirconia solid solution with improved textural properties prepared via lauric acid-assisted synthesis. Ceramics International, 2020, 46, 25211-25219.	4.8	6
12	Promotion of yttrium (Y) on the water resistance and hydrothermal stability of Pd/ZrO2 catalyst coated on the monolith for complete methane oxidation. Journal of the Taiwan Institute of Chemical Engineers, 2019, 103, 44-56.	5.3	12
13	Phase transformation and oxygen vacancies in Pd/ZrO2 for complete methane oxidation under lean conditions. Journal of Catalysis, 2019, 377, 565-576.	6.2	72
14	Pd-based Catalysts by Colloid Synthesis Using Different Reducing Reagents for Complete Oxidation of Methane. Catalysis Letters, 2019, 149, 2098-2103.	2.6	4
15	Evolution of Pd Species for the Conversion of Methane under Operation Conditions. Industrial & Engineering Chemistry Research, 2019, 58, 6255-6265.	3.7	14
16	Active oxygen-promoted NO catalytic on monolithic Pt-based diesel oxidation catalyst modified with Ce. Catalysis Today, 2019, 327, 64-72.	4.4	27
17	Effect of MOx (M = Ce, Ni, Co, Mg) on activity and hydrothermal stability of Pd supported on ZrO2–Al2O3 composite for methane lean combustion. Journal of the Taiwan Institute of Chemical Engineers, 2018, 85, 176-185.	5.3	14
18	Insight into Enhancement of NO Reduction with Methane by Multifunctional Catalysis over a Mixture of Ce/HZSM-5 and CoO _{<i>x</i>} in Excess of Oxygen. Industrial & Engineering Chemistry Research, 2018, 57, 13312-13317.	3.7	10

Lin Zhong

#	Article	IF	CITATIONS
19	P promotion on the performance of Pd-based catalyst for emission control of natural gas driven vehicles. Journal of the Taiwan Institute of Chemical Engineers, 2018, 91, 323-331.	5.3	19
20	Silicon carbide recovered from photovoltaic industry waste as photocatalysts for hydrogen production. Journal of Hazardous Materials, 2017, 329, 22-29.	12.4	41
21	Enhancement of activity and hydrothermal stability of Pd/ZrO 2 -Al 2 O 3 doped by Mg for methane combustion under lean conditions. Fuel, 2017, 194, 368-374.	6.4	40
22	Enhanced catalytic performance of a PdO catalyst prepared via a two-step method of in situ reduction–oxidation. Chemical Communications, 2017, 53, 6160-6163.	4.1	22
23	Synthesis of graphitic carbon nitride by heating mixture of urea and thiourea for enhanced photocatalytic H2 production from water under visible light. International Journal of Hydrogen Energy, 2017, 42, 143-151.	7.1	55
24	Enhanced activity and stability of the monolithic Pt/SiO2–Al2O3 diesel oxidation catalyst promoted by suitable tungsten additive amount. Journal of Industrial and Engineering Chemistry, 2017, 54, 359-368.	5.8	20
25	Pd catalyst supported on ZrO ₂ â€Al ₂ O ₃ by doubleâ€solvent method for methane oxidation under lean conditions. Canadian Journal of Chemical Engineering, 2017, 95, 1117-1123.	1.7	16
26	Catalytic performance of a Pt-Rh/CeO 2 -ZrO 2 -La 2 O 3 -Nd 2 O 3 three-way compress nature gas catalyst prepared by a modified double-solvent method. Journal of Rare Earths, 2017, 35, 857-866.	4.8	14
27	Pd or PdO: Catalytic active site of methane oxidation operated close to stoichiometric air-to-fuel for natural gas vehicles. Applied Catalysis B: Environmental, 2017, 219, 73-81.	20.2	88
28	Designed synthesis of Zr-based ceria–zirconia–neodymia composite with high thermal stability and its enhanced catalytic performance for Rh-only three-way catalyst. Catalysis Science and Technology, 2016, 6, 7437-7448.	4.1	16
29	Enhanced performance of a Pt-based three-way catalyst using a double-solvent method. RSC Advances, 2016, 6, 40366-40370.	3.6	8
30	Bifunctional Mesoporous Carbon Nitride: Highly Efficient Enzyme-like Catalyst for One-pot Deacetalization-Knoevenagel Reaction. Scientific Reports, 2015, 5, 12901.	3.3	31
31	Highly Uniform Pd Nanoparticles Supported on g-C3N4 for Efficiently Catalytic Suzuki–Miyaura Reactions. Catalysis Letters, 2015, 145, 1388-1395.	2.6	44
32	Ce–Zr–La/Al2O3 prepared in a continuous stirred-tank reactor: a highly thermostable support for an efficient Rh-based three-way catalyst. Dalton Transactions, 2015, 44, 20484-20492.	3.3	7
33	Pd nanoparticles embedded in mesoporous carbon: A highly efficient catalyst for Suzuki-Miyaura reaction. Catalysis Today, 2015, 243, 195-198.	4.4	39
34	Effects of Zr Addition on the Performance of the Pd-Pt/Al ₂ O ₃ Catalyst for Lean-Burn Natural Gas Vehicle Exhaust Purification. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2015, 31, 1771-1779.	4.9	2
35	Crystallization of metastable β glycine from gas phase via the sublimation of α or γ form in vacuum. Biophysical Chemistry, 2008, 132, 18-22.	2.8	58
36	Transfer hydrogenation of aldehydes on amphiphilic catalyst assembled at the interface of emulsion droplets. Green Chemistry, 2008, 10, 608.	9.0	64

Lin Zhong

#	Article	IF	CITATIONS
37	Glow Discharge Plasma-Assisted Preparation of Nickel-Based Catalyst for Carbon Dioxide Reforming of Methane. Chinese Journal of Chemical Physics, 2008, 21, 481-486.	1.3	17
38	Enhanced Cooperative Activation Effect in the Hydrolytic Kinetic Resolution of Epoxides on [Co(salen)] Catalysts Confined in Nanocages. Angewandte Chemie - International Edition, 2007, 46, 6861-6865.	13.8	196
39	Direct catalytic asymmetric aldol reactions on chiral catalysts assembled in the interface of emulsion droplets. Journal of Catalysis, 2007, 250, 360-364.	6.2	79
40	Direct Asymmetric Aldol Reactions on Heterogeneous Bifunctional Catalyst. Chinese Journal of Catalysis, 2007, 28, 673-675.	14.0	8
41	An unexpected inversion of enantioselectivity in direct asymmetric aldol reactions on a unique L-proline/γ-Al2O3 catalyst. Journal of Catalysis, 2006, 243, 442-445.	6.2	29