
Melvin John F Empizo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5105709/publications.pdf Version: 2024-02-01

MELVIN JOHN F EMPIZO

#	Article	IF	CITATIONS
1	Anisotropic complex refractive index of β-Ga2O3 bulk and epilayer evaluated by terahertz time-domain spectroscopy. Applied Physics Letters, 2021, 118, .	3.3	45
2	Strong yellow emission of high-conductivity bulk ZnO single crystals irradiated with high-power gyrotron beam. Applied Physics Letters, 2017, 111, .	3.3	42
3	Hydrothermal growth of vertically aligned ZnO nanorods as potential scintillator materials for radiation detectors. Journal of Luminescence, 2018, 203, 427-435.	3.1	29
4	Spectroscopic properties of Pr3+-doped 20Al(PO3)3-80LiF glasses as potential scintillators for neutron detection. Journal of Luminescence, 2018, 193, 13-21.	3.1	21
5	First-principles calculations of electronic and optical properties of LiCaAlF 6 and LiSrAlF 6 crystals as VUV to UV solid-state laser materials. Optical Materials, 2017, 65, 15-20.	3.6	19
6	Two-step fabrication of ZnO-PVP composites with tunable visible emissions. Optical Materials, 2018, 76, 317-322.	3.6	18
7	Photoluminescence properties of a single ZnO microstructure for potential scintillator applications. Optical Materials, 2014, 38, 256-260.	3.6	17
8	High pressure band gap modification of LiCaAlF6. Applied Physics Letters, 2017, 110, .	3.3	15
9	Comparison of the electronic band structures of LiCaAlF ₆ and LiSrAlF ₆ ultraviolet laser host media from ab initio calculations. Japanese Journal of Applied Physics, 2015, 54, 122602.	1.5	13
10	Spectroscopic investigation of praseodymium and cerium co-doped 20Al(PO3)3-80LiF glass for potential scintillator applications. Journal of Non-Crystalline Solids, 2019, 521, 119495.	3.1	13
11	Structural and optical characterization and scintillator application of hydrothermal-grown ZnO microrods. Optical Materials, 2017, 65, 82-87.	3.6	11
12	Significant blue-shift in photoluminescence excitation spectra of Nd3+:LaF3 potential laser medium at low-temperature. Optical Materials, 2015, 47, 462-464.	3.6	10
13	High spatial resolution ZnO scintillator for an in situ imaging device in EUV region. Optical Materials, 2014, 36, 2012-2015.	3.6	9
14	Temperature-dependent evaluation of Nd:LiCAF optical properties as potential vacuum ultraviolet laser material. Optical Materials, 2016, 58, 5-8.	3.6	8
15	High surface laser-induced damage threshold of SrB4O7 single crystals under 266-nm (DUV) laser irradiation. Optics Express, 2020, 28, 29239.	3.4	8
16	Gamma-ray irradiation effects on the optical properties of bulk ZnO single crystals. Applied Physics Express, 2015, 8, 061101.	2.4	7
17	Intense and fast UV emitting ZnO microrods fabricated by low temperature aqueous chemical growth method. Journal of Luminescence, 2016, 169, 216-219.	3.1	7
18	Optical damage assessment and recovery investigation of hydrogen-ion and deuterium-ion plasma-irradiated bulk ZnO single crystals. Journal of Applied Physics, 2017, 121, .	2.5	7

Melvin John F Empizo

#	Article	lF	CITATIONS
19	Atomistic origin of compositional pulling effect in wurtzite (B, Al, In)xGa1â^'xN: A first-principles study. Journal of Applied Physics, 2021, 130, 035704.	2.5	7
20	ZnO crystal as a potential damage-recoverable window material for fusion reactors. Optical Materials, 2016, 62, 646-650.	3.6	6
21	Direct band gap tunability of the LiYF4 crystal through high-pressure applications. Computational Materials Science, 2018, 153, 431-437.	3.0	6
22	Investigations on the electric-dipole allowed 4f25d → 4f3 broadband emission of Nd3+-doped 20Al(PO3)3-80LiF glass for potential VUV scintillator application. Journal of Alloys and Compounds, 2021, 856, 158096.	5.5	6
23	Combination of post-growth treatments and their effects on ZnO microrods as potential UV phosphors. Optical Materials, 2018, 86, 12-17.	3.6	5
24	Total internal reflection-based side-pumping configuration for terawatt ultraviolet amplifier and laser oscillator development. Applied Physics B: Lasers and Optics, 2018, 124, 1.	2.2	5
25	Picosecond UV emissions of hydrothermal grown Fe3+-doped ZnO microrods. Journal of Crystal Growth, 2021, 574, 126332.	1.5	5
26	Blue-shifted and picosecond amplified UV emission from aqueous chemical grown ZnO microrods. Optical Materials, 2015, 48, 179-184.	3.6	4
27	Investigation of holmium-doped zirconium oxide ceramic phosphor as an ultraviolet wavelength-discriminating laser beam viewer. Optical Materials, 2018, 75, 347-349.	3.6	4
28	Density functional theory-based investigation of hydrogen adsorption on zinc oxide (<mml:math) 0="" 0<="" etqq0="" td="" tj=""><td>1.9</td><td>3</td></mml:math)>	1.9	3
29	surface: Revisited. Surface Science, 2021, 703, 121726. Low-threshold amplified UV emission of optically pumped ZnO-polymer nanocomposites. Journal of Crystal Growth, 2021, 573, 126328.	1.5	3
30	Spray Pyrolysis Deposition of Alâ€Doped ZnO Thin Films for Potential Picosecond Extreme Ultraviolet Scintillator Applications. Physica Status Solidi (B): Basic Research, 2020, 257, 1900481.	1.5	2
31	Nanosecond alpha-ray response and gamma-ray radiation resistance of a hydrothermal-grown bulk ZnO single crystal. Journal of Crystal Growth, 2021, 570, 126240.	1.5	2
32	Optical transmittance investigation of 1-keV ion-irradiated sapphire crystals as potential VUV to NIR window materials of fusion reactors. AIP Advances, 2016, 6, .	1.3	1
33	Scintillation and Optical Properties of Ce-Doped Fluoride Glass Samples with Different Ce Concentrations. Sensors and Materials, 2015, , 1.	0.5	1
34	Current Status and Enhancement of Collaborative Research in the World: A Case Study of Osaka University. Journal of Data and Information Science, 2020, 5, 75-85.	1.1	1
35	Tritium-doping enhancement of polystyrene by ultraviolet laser and hydrogen plasma irradiation for laser fusion experiments. Fusion Engineering and Design, 2016, 112, 269-273.	1.9	0
36	Optical characterization of Nd ³⁺ :LiCaAlF<inf>6</inf> in the vacuum ultraviolet region at low temperature. , 2017, , .		0

#	Article	IF	CITATIONS
37	Interplay of Zn(OAc)2 concentration, morphology, and emission in hydrothermal-grown ZnO nanostructures. Journal of Crystal Growth, 2021, , 126339.	1.5	0
38	Optimized Ce:LiCAF amplifier pumping configurations. , 2018, , .		0
39	Electrical properties of \$eta\$-Ga2O3 homoepitaxial layer measured by terahertz time-domain spectroscopy. , 2020, , .		0