

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5105428/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Transition Strategy Optimization of Inconel625-HSLA Steel Functionally Graded Material Fabricated by Wire Arc Additive Manufacturing. Metals and Materials International, 2023, 29, 767-776.	1.8	5
2	Formation mechanism of CuNiAl-rich multi-structured precipitation and its effect on mechanical properties for ultra-high strength low carbon steel obtained via direct quenching and tempering process. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 833, 142567.	2.6	12
3	Characterization of nanoscale precipitates and enhanced mechanical properties of high strength weld metals containing Cu additions after PWHT. Metallurgical Research and Technology, 2022, 119, 119.	0.4	3
4	Effect of Microstructural Evolution on the Mechanical Properties of Intercritical Heatâ€Affected Zone of Quenchedâ€andâ€Tempered Ultrahighâ€Strength Steel. Steel Research International, 2022, 93, .	1.0	3
5	Effect of Electromagnetic Stirring Frequency on Inconel625-High Strength Low Alloy Steel Functionally Graded Material Fabricated by Wire Arc Additive Manufacturing. Journal of Materials Engineering and Performance, 2022, 31, 9703-9713.	1.2	5
6	Refinement mechanism of nanoscale Cu-rich precipitates by Mo addition and its effect on strength-toughness of Cu-bearing low carbon high strength steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 849, 143469.	2.6	4
7	Additive manufacturing of Inconel625-HSLA Steel functionally graded material by wire arc additive manufacturing. Metallurgical Research and Technology, 2021, 118, 502.	0.4	7
8	Effect of austenite transformation degree on microstructure and fracture toughness of high-strain pipeline steel. Journal of Materials Science, 2021, 56, 13827-13840.	1.7	8
9	Improvement in corrosion resistance of wire arc additive manufactured Inconel 625 alloy through heat treatment. Materials Research Express, 2021, 8, 066529.	0.8	6
10	Improvement of mechanical properties for low carbon ultra-high strength steel strengthened by Cu-rich multistructured precipitation via modification to bainite. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 817, 141337.	2.6	26
11	Size effect on residual stress in low transformation temperature welded joints. Marine Structures, 2021, 78, 103001.	1.6	4
12	Effect of cyclic plastic deformation on hydrogen diffusion behavior and embrittlement susceptibility of reeling-pipeline steel weldments. International Journal of Hydrogen Energy, 2021, 46, 30158-30172.	3.8	11
13	Transformation temperatures, mechanical properties and residual stress of two low-transformation-temperature weld metals. Science and Technology of Welding and Joining, 2021, 26, 144-152.	1.5	4
14	The Influence of Ni on Bainite/Martensite Transformation and Mechanical Properties of Deposited Metals Obtained from Metal-Cored Wire. Metals, 2021, 11, 1971.	1.0	5
15	Effect of restraint stress on martensite transformation in low transformation temperature weld metal. Journal of Materials Science, 2020, 55, 2202-2214.	1.7	8
16	The mutual effect of hydrogen and cyclic plastic deformation on ductility degradation of X65 reeled-pipeline welded joint. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 791, 139739.	2.6	8
17	EBSD analysis of microstructures and mechanical properties of softened zones in X60 reeled-pipeline welded joint after cyclic plastic deformation. Welding in the World, Le Soudage Dans Le Monde, 2020, 64, 1213-1225.	1.3	12
18	Mechanical properties of low-transformation-temperature weld metals after low-temperature postweld heat treatment. Science and Technology of Welding and Joining, 2019, 24, 112-120.	1.5	15

Xinjie Di

#	Article	IF	CITATIONS
19	Solidification behaviour and microstructure of welding transition zone using low-transformation-temperature welding consumables. Science and Technology of Welding and Joining, 2019, 24, 148-155.	1.5	6
20	Effects of heat input on microstructure and fracture toughness of simulated coarse-grained heat affected zone for HSLA steels. Materials Characterization, 2019, 155, 109818.	1.9	63
21	Deformation Behavior and Microstructural Evolution of Reeled Pipeline Steels during Cyclic Plastic Deformation. Journal of Materials Engineering and Performance, 2019, 28, 6449-6457.	1.2	2
22	Strength-toughness improvement of martensite-austenite dual phase deposited metals after austenite reversed treatment with short holding time. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 755, 57-65.	2.6	24
23	Effect of dilution on fatigue behaviour of welded joints produced by low-transformation-temperature fillers. Science and Technology of Welding and Joining, 2019, 24, 601-608.	1.5	5
24	Microstructural evolution and its influence on toughness in simulated inter-critical heat affected zone of large thickness bainitic steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 743, 67-76.	2.6	40
25	Toughening mechanisms of low transformation temperature deposited metals with martensite–austenite dual phases. Journal of Materials Science, 2018, 53, 3720-3734.	1.7	24
26	Effect of cyclic plastic deformation on microstructure and mechanical properties of weld metals used for reel-lay pipeline steels. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 737, 77-84.	2.6	19
27	Enhanced toughness of Fe–12Cr–5.5Ni–Mo-deposited metals through formation of fine reversed austenite. Journal of Materials Science, 2018, 53, 15679-15693.	1.7	14
28	Toughening mechanism of inter-critical heat-affected zone in a 690â€⁻MPa grade rack plate steel. Materials Characterization, 2018, 144, 631-640.	1.9	17
29	Arc Characteristic and Metal Transfer of Pulse Current Horizontal Flux-Cored Arc Welding. Transactions of Tianjin University, 2017, 23, 101-109.	3.3	8
30	Microstructural and mechanical performance of underwater wet welded S355 steel. Journal of Materials Processing Technology, 2016, 238, 333-340.	3.1	72
31	Microstructural evolution of transition zone of clad X70 with duplex stainless steel. Materials and Design, 2016, 95, 231-236.	3.3	22
32	Microstructural evolution, coarsening behavior of vanadium carbide and mechanical properties in the simulated heat-affected zone of modified medium manganese steel. Materials and Design, 2016, 96, 232-240.	3.3	34
33	A bainite transformation kinetics model and its application to X70 pipeline steel. Journal of Materials Science, 2015, 50, 5079-5090.	1.7	11
34	Effect of cooling rate on microstructure, inclusions and mechanical properties of weld metal in simulated local dry underwater welding. Materials and Design, 2015, 88, 505-513.	3.3	69
35	Effect of pulse current on mechanical properties and dendritic morphology of modified medium manganese steel welds metal. Materials & Design, 2015, 66, 169-175.	5.1	19
36	The effect of post-weld heat treatment temperature on the microstructure of Inconel 625 deposited metal. Journal of Alloys and Compounds, 2014, 593, 110-116.	2.8	116

Xinjie Di

#	Article	IF	CITATIONS
37	Influence of austenitization temperature on phase transformation features of modified high Cr ferritic heat-resistant steel. Nuclear Engineering and Design, 2013, 256, 148-152.	0.8	18
38	Simulation and analysis of temperature field for in-service multi-pass welding of a sleeve fillet weld. Computational Materials Science, 2013, 68, 198-205.	1.4	23
39	Martensite transformation in the modified high Cr ferritic heat-resistant steel during continuous cooling. Journal of Materials Research, 2012, 27, 2779-2789.	1.2	20
40	The isochronal δÂ→Âγ transformation of high Cr ferritic heat-resistant steel during cooling. Journal of Materials Science, 2011, 46, 6910-6915.	1.7	15
41	Combined effects of welding heat input and peak temperature on precipitation and mechanical properties of the HAZ for modified austenitic medium manganese steels. Materials Research Express, 0, , .	0.8	2