
Guangxue Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5105102/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Highly Stretchable and Compressible Cellulose Ionic Hydrogels for Flexible Strain Sensors. Biomacromolecules, 2019, 20, 2096-2104.	2.6	171
2	Autonomous Self-Healing, Antifreezing, and Transparent Conductive Elastomers. Chemistry of Materials, 2020, 32, 874-881.	3.2	138
3	Xylan-based temperature/pH sensitive hydrogels for drug controlled release. Carbohydrate Polymers, 2016, 151, 189-197.	5.1	107
4	Highly transparent, self-healing conductive elastomers enabled by synergistic hydrogen bonding interactions. Chemical Engineering Journal, 2020, 393, 124685.	6.6	98
5	Ultrastretchable and Antifreezing Double-Cross-Linked Cellulose Ionic Hydrogels with High Strain Sensitivity under a Broad Range of Temperature. ACS Sustainable Chemistry and Engineering, 2019, 7, 14256-14265.	3.2	93
6	Patternable transparent and conductive elastomers towards flexible tactile/strain sensors. Journal of Materials Chemistry C, 2017, 5, 8475-8481.	2.7	90
7	Enhanced mechanical and hydrophobic properties of composite cassava starch films with stearic acid modified MCC (microcrystalline cellulose)/NCC (nanocellulose) as strength agent. International Journal of Biological Macromolecules, 2020, 142, 846-854.	3.6	83
8	Rapid shape memory TEMPO-oxidized cellulose nanofibers/polyacrylamide/gelatin hydrogels with enhanced mechanical strength. Carbohydrate Polymers, 2017, 171, 77-84.	5.1	79
9	Transparent conductive elastomers with excellent autonomous self-healing capability in harsh organic solvent environments. Journal of Materials Chemistry A, 2020, 8, 5056-5061.	5.2	74
10	Polymerizable deep eutectic solvent-based mechanically strong and ultra-stretchable conductive elastomers for detecting human motions. Journal of Materials Chemistry A, 2021, 9, 4890-4897.	5.2	70
11	Multivalent cations-triggered rapid shape memory sodium carboxymethyl cellulose/polyacrylamide hydrogels with tunable mechanical strength. Carbohydrate Polymers, 2017, 178, 159-165.	5.1	69
12	A comparative study on the starch-based biocomposite films reinforced by nanocellulose prepared from different non-wood fibers. Cellulose, 2019, 26, 2425-2435.	2.4	61
13	Castor Oil Based Biothiol as a Highly Stable and Self-Initiated Oligomer for Photoinitiator-Free UV Coatings. ACS Sustainable Chemistry and Engineering, 2017, 5, 376-381.	3.2	60
14	Development of high-strength, tough, and self-healing carboxymethyl guar gum-based hydrogels for human motion detection. Journal of Materials Chemistry C, 2020, 8, 900-908.	2.7	60
15	Stiff, Self-Healable, Transparent Polymers with Synergetic Hydrogen Bonding Interactions. Chemistry of Materials, 2021, 33, 5189-5196.	3.2	56
16	Green polymerizable deep eutectic solvent (PDES) type conductive paper for origami 3D circuits. Chemical Communications, 2018, 54, 2304-2307.	2.2	55
17	3D printing of ultra-tough, self-healing transparent conductive elastomeric sensors. Chemical Engineering Journal, 2021, 426, 130545.	6.6	51
18	High-strength, tough, and self-healing hydrogel based on carboxymethyl cellulose. Cellulose, 2020, 27, 853-865	2.4	50

#	Article	IF	CITATIONS
19	Photoluminescent Composites of Lanthanide-Based Nanocrystal-Functionalized Cellulose Fibers for Anticounterfeiting Applications. ACS Sustainable Chemistry and Engineering, 2018, 6, 13960-13967.	3.2	45
20	Robust fabrication of fluorine-free superhydrophobic steel mesh for efficient oil/water separation. Journal of Materials Science, 2017, 52, 2549-2559.	1.7	43
21	An Image Stitching Algorithm Based on Histogram Matching and SIFT Algorithm. International Journal of Pattern Recognition and Artificial Intelligence, 2017, 31, 1754006.	0.7	42
22	Three-dimensional Printed Ultrahighly Sensitive Bioinspired Ionic Skin Based on Submicrometer-Scale Structures by Polymerization Shrinkage. Chemistry of Materials, 2021, 33, 2072-2079.	3.2	40
23	Engineering Biocompatible Hydrogels from Bicomponent Natural Nanofibers for Anticancer Drug Delivery. Journal of Agricultural and Food Chemistry, 2018, 66, 935-942.	2.4	38
24	Highly stretchable ionic conducting hydrogels for strain/tactile sensors. Polymer, 2019, 167, 154-158.	1.8	38
25	Highly transparent, weakly hydrophilic and biodegradable cellulose film for flexible electroluminescent devices. Carbohydrate Polymers, 2020, 227, 115366.	5.1	38
26	Comparative study on temperature/pH sensitive xylan-based hydrogels: their properties and drug controlled release. RSC Advances, 2015, 5, 90671-90681.	1.7	37
27	Preparation and characterization of highly transparent hydrophobic nanocellulose film using corn husks as main material. International Journal of Biological Macromolecules, 2020, 158, 781-789.	3.6	34
28	Ionic Gel Paper with Long-Term Bendable Electrical Robustness for Use in Flexible Electroluminescent Devices. ACS Applied Materials & Interfaces, 2017, 9, 16466-16473.	4.0	32
29	Self-Adhesive Dry Ionic Conductors Based on Supramolecular Deep Eutectic Polymers. Chemistry of Materials, 2022, 34, 3736-3743.	3.2	31
30	Facile Preparation of Highly Transparent Conducting Nanopaper with Electrical Robustness. ACS Sustainable Chemistry and Engineering, 2020, 8, 5132-5139.	3.2	29
31	Weavable Transparent Conductive Fibers with Harsh Environment Tolerance. ACS Applied Materials & Interfaces, 2021, 13, 8952-8959.	4.0	29
32	Preparation and Assessment of Heat-Treated α-Chitin Nanowhiskers Reinforced Poly(viny alcohol) Film for Packaging Application. Materials, 2018, 11, 1883.	1.3	26
33	Design of strong and tough methylcellulose-based hydrogels using kosmotropic Hofmeister salts. Cellulose, 2020, 27, 1113-1126.	2.4	26
34	Low-Cost, Sustainable, and Environmentally Sound Cellulose Absorbent with High Efficiency for Collecting Methane Bubbles from Seawater. ACS Sustainable Chemistry and Engineering, 2018, 6, 6370-6377.	3.2	25
35	The preparation of α-chitin nanowhiskers-poly (vinyl alcohol) hydrogels for drug release. International Journal of Biological Macromolecules, 2019, 131, 336-342.	3.6	25
36	Nanochitin/metal ion dual reinforcement in synthetic polyacrylamide network-based nanocomposite hydrogels. Carbohydrate Polymers, 2020, 236, 116061.	5.1	22

#	Article	IF	CITATIONS
37	<i>N</i> -Phthaloyltranexamic acid ammonium salt derivatives as photocaged superbase for redox free radical photopolymerization. Polymer Chemistry, 2014, 5, 2951-2960.	1.9	21
38	Mechanically tough yet self-healing transparent conductive elastomers obtained using a synergic dual cross-linking strategy. Polymer Chemistry, 2021, 12, 2016-2023.	1.9	19
39	Microwave-assisted hydrothermal treatment of corncob using tin(IV) chloride as catalyst for furfural production. Cellulose, 2016, 23, 1649-1661.	2.4	18
40	High cycling stability and well printability poly(3,4â€ethylenedioxythiophene):poly(styrene) Tj ETQq0 0 0 rgBT electrochromic display. Journal of Applied Polymer Science, 2018, 135, 45943.	Overlock 1 1.3	0 Tf 50 627 To 18
41	Paper-based analytical device for high-throughput monitoring tetracycline residue in milk. Food Chemistry, 2021, 354, 129548.	4.2	18
42	Highly Transparent, Flexible and Conductive CNF/AgNW Paper for Paper Electronics. Materials, 2019, 12, 322.	1.3	17
43	3D Printing of Oil Paintings Based on Material Jetting and Its Reduction of Staircase Effect. Polymers, 2020, 12, 2536.	2.0	17
44	Highly Stretchable, Strain-Sensitive, and Ionic-Conductive Cellulose-Based Hydrogels for Wearable Sensors. Polymers, 2019, 11, 2067.	2.0	16
45	Facile Approach to Develop Hierarchical Roughness fiber@SiO2 Blocks for Superhydrophobic Paper. Materials, 2019, 12, 1393.	1.3	15
46	Controllable preparation of carboxymethyl cellulose/LaF3:Eu3+ composites and its application in anti-counterfeiting. International Journal of Biological Macromolecules, 2020, 164, 2224-2231.	3.6	15
47	High-strength paper enhanced by chitin nanowhiskers and its potential bioassay applications. International Journal of Biological Macromolecules, 2020, 150, 885-893.	3.6	15
48	Color Reproduction Accuracy Promotion of 3D-Printed Surfaces Based on Microscopic Image Analysis. International Journal of Pattern Recognition and Artificial Intelligence, 2020, 34, 2054004.	0.7	14
49	Kinetic research on dechlorinating dichlorobenzene in aqueous system by nano-scale nickel/iron loaded with CMC/NFC hydrogel. Chemosphere, 2018, 194, 297-305.	4.2	14
50	Liquid-Free Ionic Conductive Elastomers with High Mechanical Strength and Rapid Healable Ability. ACS Applied Polymer Materials, 2022, 4, 3543-3551.	2.0	14
51	Experimental Investigation of Color Reproduction Quality of Color 3D Printing Based on Colored Layer Features. Molecules, 2020, 25, 2909.	1.7	13
52	Biosynthesis of silver nanoparticles applied for UVâ€curing conductive ink by using rice straw extract as reducing agent. Canadian Journal of Chemical Engineering, 2017, 95, 2350-2356.	0.9	12
53	Superhydrophilic three-dimensional porous spent coffee ground reduced palladium nanoparticles for efficient catalytic reduction. Journal of Colloid and Interface Science, 2022, 608, 1414-1421.	5.0	12
54	A Repeatable Self-Adhesive Liquid-Free Double-Network Ionic Conductor with Tunable Multifunctionality. ACS Applied Materials & Interfaces, 2022, 14, 22418-22425.	4.0	12

#	Article	IF	CITATIONS
55	In Situ Synthesis of Silver Nanoparticles on Cellulose Fibers Using D-Glucuronic Acid and Its Antibacterial Application. Materials, 2019, 12, 3101.	1.3	11
56	Thioxanthone dicarboxamide derivatives as one-component photoinitiators for near-UV and visible LED (365–405 nm) induced photopolymerizations. RSC Advances, 2016, 6, 77093-77099.	1.7	10
57	Rapid preparation of highly transparent piezoresistive balls for optoelectronic devices. Chemical Communications, 2020, 56, 2771-2774.	2.2	10
58	Domino free radical photopolymerization based on phototriggered base proliferation reaction and redox initiation. Journal of Polymer Science Part A, 2014, 52, 1560-1569.	2.5	9
59	Chitin/Ca solvent-based conductive and stretchable organohydrogel with anti-freezing and anti-drying. International Journal of Biological Macromolecules, 2022, 207, 484-492.	3.6	8
60	Evaluation of image quality metrics for sharpness enhancement. , 2017, , .		7
61	Tuning of the photophysical and electrochemical properties of symmetric and asymmetric conjugated thiophenoazomethines. RSC Advances, 2018, 8, 12779-12784.	1.7	7
62	Advanced Surface Color Quality Assessment in Paper-Based Full-Color 3D Printing. Materials, 2021, 14, 736.	1.3	7
63	Preparation and Characterization of Polyvinyl Alcohol hitosan/Ceriumâ€Nanocellulose Hydrogel for Medical Dressing Application. Starch/Staerke, 2022, 74, .	1.1	6
64	Preparation of Modified Montmorillonite—Plant Fiber Composite Foam Materials. Materials, 2019, 12, 420.	1.3	5
65	Naked-Eye 3D Display Based on Microlens Array Using Combined Micro-Nano Imprint and UV Offset Printing Methods. Molecules, 2020, 25, 2012.	1.7	5
66	Preparation and Characterization of Polyvinyl Alcohol hitosan/Cerium Hydrogel with Significant Antibacterial Activity. Starch/Staerke, 2021, 73, 2000253.	1.1	5
67	Pigment Penetration Characterization of Colored Boundaries in Powder-Based Color 3D Printing. Materials, 2022, 15, 3245.	1.3	5
68	Development and evaluation of a hybrid point-wise gamut mapping framework. , 2015, , .		4
69	A green method of reducing silver nanoparticles based on bagasse pulp extract for preparing ultraviolet (UV) urable conductive ink. Journal of Vinyl and Additive Technology, 2020, 26, 90-96.	1.8	4
70	Reflectance model for filament yarn composed of different color monofilaments. Journal of the Textile Institute, 2021, 112, 2039-2047.	1.0	4
71	Realization of Rapid Large-Size 3D Printing Based on Full-Color Powder-Based 3DP Technique. Molecules, 2020, 25, 2037.	1.7	3
72	Hibiscus Leachate Dye-Based Low-Cost and Flexible Dye-Sensitized Solar Cell Prepared by Screen Printing. Materials, 2021, 14, 2748.	1.3	1

#	Article	IF	CITATIONS
73	Straightforward fabrication of robust and healable superhydrophobic steel mesh based on polydimethylsiloxane. Journal of Applied Polymer Science, 2022, 139, .	1.3	1
74	The Research and Application of System for Paper Surface Morphology Stereoscopic Observation and Characterization. International Journal of Uncertainty, Fuzziness and Knowlege-Based Systems, 2021, 29, 89-100.	0.9	0
75	Color Prediction Model of Gray Hybrid Multifilament Fabric. Journal of Shanghai Jiaotong University (Science), 0, , 1.	0.5	Ο
76	Effect of Reaction Temperature on the Fluorescence Properties of CMC/LaF3: Eu3+ Composites. Lecture Notes in Electrical Engineering, 2020, , 814-820.	0.3	0