Anthony H C Huang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5105017/publications.pdf

Version: 2024-02-01

32 papers

2,426 citations

201674 27 h-index 434195 31 g-index

32 all docs

32 docs citations

times ranked

32

2144 citing authors

#	Article	IF	CITATIONS
1	Plant Lipid Droplets and Their Associated Proteins: Potential for Rapid Advances. Plant Physiology, 2018, 176, 1894-1918.	4.8	194
2	Unique Motifs and Length of Hairpin in Oleosin Target the Cytosolic Side of Endoplasmic Reticulum and Budding Lipid Droplet. Plant Physiology, 2017, 174, 2248-2260.	4.8	51
3	Subcellular Lipid Droplets in Vanilla Leaf Epidermis and Avocado Mesocarp Are Coated with Oleosins of Distinct Phylogenic Lineages. Plant Physiology, 2016, 171, 1867-1878.	4.8	16
4	Bioinformatics Reveal Five Lineages of Oleosins and the Mechanism of Lineage Evolution Related to Structure/Function from Green Algae to Seed Plants. Plant Physiology, 2015, 169, 453-470.	4.8	56
5	Abundant Type III Lipid Transfer Proteins in Arabidopsis Tapetum Are Secreted to the Locule and Become a Constituent of the Pollen Exine. Plant Physiology, 2013, 163, 1218-1229.	4.8	91
6	Oleosin of Subcellular Lipid Droplets Evolved in Green Algae Â. Plant Physiology, 2013, 161, 1862-1874.	4.8	63
7	Tandem oleosin genes in a cluster acquired in Brassicaceae created tapetosomes and conferred additive benefit of pollen vigor. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 14480-14485.	7.1	22
8	The Maize Tapetum Employs Diverse Mechanisms to Synthesize and Store Proteins and Flavonoids and Transfer Them to the Pollen Surface Â. Plant Physiology, 2012, 158, 1548-1561.	4.8	36
9	Oil Bodies and Oleosins in <i>Physcomitrella</i> Possess Characteristics Representative of Early Trends in Evolution Â. Plant Physiology, 2009, 150, 1192-1203.	4.8	73
10	Analyses of Advanced Rice Anther Transcriptomes Reveal Global Tapetum Secretory Functions and Potential Proteins for Lipid Exine Formation Â. Plant Physiology, 2009, 149, 694-707.	4.8	58
11	Tapetosomes in Brassica Tapetum Accumulate Endoplasmic Reticulum–Derived Flavonoids and Alkanes for Delivery to the Pollen Surface. Plant Cell, 2007, 19, 582-596.	6.6	189
12	Oleosins and Endoplasmic Reticulum in Seeds and Anthers. Plant Cell Monographs, 2006, , 187-204.	0.4	1
13	Lipid-rich tapetosomes in Brassica tapetum are composed of oleosin-coated oil droplets and vesicles, both assembled in and then detached from the endoplasmic reticulum. Plant Journal, 2005, 43, 889-899.	5.7	73
14	Ubiquitous and Endoplasmic Reticulum–Located Lysophosphatidyl Acyltransferase, LPAT2, Is Essential for Female but Not Male Gametophyte Development in Arabidopsis. Plant Cell, 2005, 17, 1073-1089.	6.6	183
15	Endoplasmic Reticulum, Oleosins, and Oils in Seeds and Tapetum Cells. Plant Physiology, 2004, 136, 3427-3434.	4.8	184
16	Plastid Lysophosphatidyl Acyltransferase Is Essential for Embryo Development in Arabidopsis. Plant Physiology, 2004, 134, 1206-1216.	4.8	133
17	Cell Wall Reactive Proteins in the Coat and Wall of Maize Pollen. Journal of Biological Chemistry, 2003, 278, 43672-43681.	3.4	63
18	A Novel Group of Oleosins Is Present Inside the Pollen of Arabidopsis. Journal of Biological Chemistry, 2002, 277, 22677-22684.	3.4	154

#	Article	IF	CITATIONS
19	Brassica rapa Has Three Genes That Encode Proteins Associated with Different Neutral Lipids in Plastids of Specific Tissues. Plant Physiology, 2001, 126, 330-341.	4.8	41
20	Steryl esters in the elaioplasts of the tapetum in developing Brassica anthers and their recovery on the pollen surface. Lipids, 1999, 34, 517-523.	1.7	52
21	Constituents of the tapetosomes and elaioplasts inBrassica campestristapetum and their degradation and retention during microsporogenesis. Plant Journal, 1998, 16, 541-551.	5.7	98
22	Plant Peroxisomes: Discovery and Current Advances. , 1998, , 189-201.		1
23	Oleosin of Plant Seed Oil Bodies Is Correctly Targeted to the Lipid Bodies in Transformed Yeast. Journal of Biological Chemistry, 1997, 272, 3699-3706.	3.4	47
24	Identification, subcellular localization, and developmental studies of oleosins in the anther of Brassica napus. Plant Journal, 1997, 11, 475-487.	5.7	36
25	Oleosins and oil bodies in plant seeds have postulated structures. Biochemical Journal, 1996, 317, 956-958.	3.7	15
26	Oleosin genes in maize kernels having diverse oil contents are constitutively expressed independent of oil contents. Planta, 1996, 199, 158-65.	3.2	89
27	Genetic dissection of the co-expression of genes encoding the two isoforms of oleosins in the oil bodies of maize kernel. Plant Journal, 1995, 7, 603-611.	5.7	36
28	Oleosins in the gametophytes of Pinus and Brassica and their phylogenetic relationship with those in the sporophytes of various species. Planta, 1994, 193, 461-9.	3.2	35
29	Oleosin Isoforms of High and Low Molecular Weights Are Present in the Oil Bodies of Diverse Seed Species. Plant Physiology, 1990, 94, 1282-1289.	4.8	170
30	Immunogold Localization of the L3 Protein of Maize Lipid Bodies during Germination and Seedling Growth. Plant Physiology, 1988, 86, 270-274.	4.8	28
31	Diacylglycerol Acyltransferase in Maturing Oil Seeds of Maize and Other Species. Plant Physiology, 1986, 82, 813-820.	4.8	72
32	Lipase in lipid bodies of cotyledons of rape and mustard seedlings. Archives of Biochemistry and Biophysics, 1983, 225, 360-369.	3.0	66