Sigalit Gura

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5104734/publications.pdf

Version: 2024-02-01

1163117 1058476 14 265 8 14 citations h-index g-index papers 14 14 14 335 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Dynamic Planar Solid Phase Microextractionâ^'lon Mobility Spectrometry for Rapid Field Air Sampling and Analysis of Illicit Drugs and Explosives. Analytical Chemistry, 2010, 82, 2826-2835.	6.5	102
2	Trace detection of explosives with a unique large volume injection gas chromatography-mass spectrometry (LVI-GC-MS) method. Analytical Methods, 2018, 10, 2712-2721.	2.7	26
3	Enhancement in sample collection for the detection of MDMA using a novel planar SPME (PSPME) device coupled to ion mobility spectrometry (IMS). Drug Testing and Analysis, 2009, 1, 355-362.	2.6	24
4	The coupling of capillary microextraction of volatiles (CMV) dynamic air sampling device with DART-MS analysis for the detection of gunshot residues. Forensic Chemistry, 2018, 8, 49-56.	2.8	21
5	Improved detection of botulinum type E by rational design of a new peptide substrate for endopeptidase–mass spectrometry assay. Analytical Biochemistry, 2014, 456, 50-52.	2.4	16
6	A new peptide substrate for enhanced botulinum neurotoxin type B detection by endopeptidase–liquid chromatography–tandem mass spectrometry/multiple reaction monitoring assay. Analytical Biochemistry, 2015, 473, 7-10.	2.4	16
7	Capillary microextraction of volatiles device for enhanced BTEX vapors sampling based on a phenyl modified PDMS sol-gel adsorption phase. Analytica Chimica Acta, 2018, 1014, 27-40.	5.4	14
8	Solid-phase microextraction (SPME) calibration using inkjet microdrop printing for direct loading of known analyte mass on to SPME fibers. Analytical and Bioanalytical Chemistry, 2010, 398, 1049-1060.	3.7	9
9	Rapid and sensitive identification of ricin in environmental samples based on lactamyl agarose beads using LCâ€MS/MS (MRM). Journal of Mass Spectrometry, 2020, 55, e4482.	1.6	9
10	Determination of free G-type nerve agents in blood: in situ derivatization on a dried blood spot (DBS) paper followed by LC–MS/MS analysis. Forensic Toxicology, 2020, 38, 327-339.	2.4	8
11	Instantaneous monitoring of free sarin in whole blood by dry blood spot–thermal desorption–GC–FPD/MS analysis. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2020, 1136, 121911.	2.3	7
12	Cryofocusing capillary microextraction of volatiles (Cryo-CMV) as a novel headspace extraction device for the analysis of volatile organic compounds and smokeless powders. Forensic Chemistry, 2017, 3, 81-89.	2.8	6
13	GC columns as micro-air samplers for the quantitative analysis of naphthalene vapours. Analytical Methods, 2017, 9, 393-401.	2.7	5
14	Optimization of SNAP-25-derived peptide substrate for improved detection of botulinum A in the Endopep-MS assay. Analytical Biochemistry, 2017, 528, 34-37.	2.4	2