
Edmondo Maria Benetti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5104137/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Oxygen Tolerance in Surface-Initiated Reversible Deactivation Radical Polymerizations: Are Polymer Brushes Turning into Technology?. ACS Macro Letters, 2022, 11, 415-421.	2.3	28
2	Topology and Molecular Architecture of Polyelectrolytes Determine Their pH-Responsiveness When Assembled on Surfaces. ACS Macro Letters, 2021, 10, 90-97.	2.3	8
3	Hydrogels Generated from Cyclic Poly(2â€Oxazoline)s Display Unique Swelling and Mechanical Properties. Macromolecular Rapid Communications, 2021, 42, e2000658.	2.0	13
4	Biomaterials applications of cyclic polymers. Biomaterials, 2021, 267, 120468.	5.7	31
5	The role of poly(2-alkyl-2-oxazoline)s in hydrogels and biofabrication. Biomaterials Science, 2021, 9, 2874-2886.	2.6	15
6	Fabrication of Three-Dimensional Polymer-Brush Gradients within Elastomeric Supports by Cu ⁰ -Mediated Surface-Initiated ATRP. ACS Macro Letters, 2021, 10, 1099-1106.	2.3	10
7	Dispersity within Brushes Plays a Major Role in Determining Their Interfacial Properties: The Case of Oligoxazoline-Based Graft Polymers. Journal of the American Chemical Society, 2021, 143, 19067-19077.	6.6	21
8	Fabrication of Biopassive Surfaces Using Poly(2â€alkylâ€2â€oxazoline)s: Recent Progresses and Applications. Advanced Materials Interfaces, 2020, 7, 2000943.	1.9	15
9	Polymer Topology Determines the Formation of Protein Corona on Core–Shell Nanoparticles. ACS Nano, 2020, 14, 12708-12718.	7.3	45
10	Mechanism and application of surface-initiated ATRP in the presence of a Zn ⁰ plate. Polymer Chemistry, 2020, 11, 7009-7014.	1.9	21
11	Topological Polymer Chemistry Enters Materials Science: Expanding the Applicability of Cyclic Polymers. ACS Macro Letters, 2020, 9, 1024-1033.	2.3	44
12	Functional Nanoassemblies of Cyclic Polymers Show Amplified Responsiveness and Enhanced Protein-Binding Ability. ACS Nano, 2020, 14, 10054-10067.	7.3	23
13	Versatile Surface Modification of Hydrogels by Surface-Initiated, Cu ⁰ -Mediated Controlled Radical Polymerization. ACS Applied Materials & Interfaces, 2020, 12, 6761-6767.	4.0	38
14	Oxygen Tolerant and Cytocompatible Iron(0)-Mediated ATRP Enables the Controlled Growth of Polymer Brushes from Mammalian Cell Cultures. Journal of the American Chemical Society, 2020, 142, 3158-3164.	6.6	59
15	Surface-Initiated Photoinduced ATRP: Mechanism, Oxygen Tolerance, and Temporal Control during the Synthesis of Polymer Brushes. Macromolecules, 2020, 53, 2801-2810.	2.2	53
16	Influence of the Aliphatic Side Chain on the Near Atmospheric Pressure Plasma Polymerization of 2-Alkyl-2-oxazolines for Biomedical Applications. ACS Applied Materials & Interfaces, 2019, 11, 31356-31366.	4.0	17
17	Brushes, Graft Copolymers, or Bottlebrushes? The Effect of Polymer Architecture on the Nanotribological Properties of Grafted-from Assemblies. Langmuir, 2019, 35, 11255-11264.	1.6	23
18	Growing Polymer Brushes from a Variety of Substrates under Ambient Conditions by Cu ⁰ -Mediated Surface-Initiated ATRP. ACS Applied Materials & Interfaces, 2019, 11, 27470-27477.	4.0	50

#	Article	IF	CITATIONS
19	Double-Network Hydrogels Including Enzymatically Crosslinked Poly-(2-alkyl-2-oxazoline)s for 3D Bioprinting of Cartilage-Engineering Constructs. Biomacromolecules, 2019, 20, 4502-4511.	2.6	54
20	Bioinert and Lubricious Surfaces by Macromolecular Design. Langmuir, 2019, 35, 13521-13535.	1.6	19
21	Translating Surface-Initiated Atom Transfer Radical Polymerization into Technology: The Mechanism of Cu ⁰ -Mediated SI-ATRP under Environmental Conditions. ACS Macro Letters, 2019, 8, 865-870.	2.3	50
22	Using Polymers to Impart Lubricity and Biopassivity to Surfaces: Are These Properties Linked?. Helvetica Chimica Acta, 2019, 102, e1900071.	1.0	28
23	Comblike Polymers with Topologically Different Side Chains for Surface Modification: Assembly Process and Interfacial Physicochemical Properties. Macromolecules, 2019, 52, 1632-1641.	2.2	22
24	Poly(3-hexylthiophene) nanowhiskers filler in poly(Îμ-caprolactone) based nanoblends as potential bioactive material. European Polymer Journal, 2019, 114, 144-150.	2.6	3
25	Biocatalytic ATRP in solution and on surfaces. Methods in Enzymology, 2019, 627, 263-290.	0.4	1
26	Surface-grafted assemblies of cyclic polymers: Shifting between high friction and extreme lubricity. European Polymer Journal, 2019, 110, 301-306.	2.6	33
27	Surface-Initiated Cu(0)-Mediated CRP for the Rapid and Controlled Synthesis of Quasi-3D Structured Polymer Brushes. ACS Macro Letters, 2019, 8, 145-153.	2.3	43
28	Cyclic Polymer Grafts That Lubricate and Protect Damaged Cartilage. Angewandte Chemie - International Edition, 2018, 57, 1621-1626.	7.2	84
29	Hairy and Slippery Polyoxazoline-Based Copolymers on Model and Cartilage Surfaces. Biomacromolecules, 2018, 19, 680-690.	2.6	36
30	Molecularly Engineered Biolubricants for Articular Cartilage. Advanced Healthcare Materials, 2018, 7, e1701463.	3.9	43
31	Cyclic Polymer Grafts That Lubricate and Protect Damaged Cartilage. Angewandte Chemie, 2018, 130, 1637-1642.	1.6	10
32	Nanobiointerfaces: a themed collection. Biomaterials Science, 2018, 6, 706-707.	2.6	0
33	Engineering Lubricious, Biopassive Polymer Brushes by Surface-Initiated, Controlled Radical Polymerization. Industrial & Engineering Chemistry Research, 2018, 57, 4600-4606.	1.8	5
34	Design and characterization of ultrastable, biopassive and lubricious cyclic poly(2-alkyl-2-oxazoline) brushes. Polymer Chemistry, 2018, 9, 2580-2589.	1.9	56
35	Poly(2-oxazoline)–Pterostilbene Block Copolymer Nanoparticles for Dual-Anticancer Drug Delivery. Biomacromolecules, 2018, 19, 103-111.	2.6	28
36	Enzymatically crosslinked poly(2-alkyl-2-oxazoline) networks for 3D cell culture. Journal of Materials Chemistry B, 2018, 6, 7568-7572.	2.9	17

#	Article	IF	CITATIONS
37	Mixing Poly(ethylene glycol) and Poly(2-alkyl-2-oxazoline)s Enhances Hydration and Viscoelasticity of Polymer Brushes and Determines Their Nanotribological and Antifouling Properties. ACS Applied Materials & Interfaces, 2018, 10, 41839-41848.	4.0	36
38	Surface Density Variation within Cyclic Polymer Brushes Reveals Topology Effects on Their Nanotribological and Biopassive Properties. ACS Macro Letters, 2018, 7, 1455-1460.	2.3	39
39	Assembly of poly-3-(hexylthiophene) nanocrystals in marginal solvent: The role of PCBM. European Polymer Journal, 2018, 109, 222-228.	2.6	4
40	Robust and Biocompatible Functionalization of ZnS Nanoparticles by Catechol-Bearing Poly(2-methyl-2-oxazoline)s. Langmuir, 2018, 34, 11534-11543.	1.6	7
41	Quasiâ€3Dâ€5tructured Interfaces by Polymer Brushes. Macromolecular Rapid Communications, 2018, 39, e1800189.	2.0	19
42	Chemical Design of Nonâ€lonic Polymer Brushes as Biointerfaces: Poly(2â€oxazine)s Outperform Both Poly(2â€oxazoline)s and PEG. Angewandte Chemie, 2018, 130, 11841-11846.	1.6	6
43	Chemical Design of Nonâ€Ionic Polymer Brushes as Biointerfaces: Poly(2â€oxazine)s Outperform Both Poly(2â€oxazoline)s and PEG. Angewandte Chemie - International Edition, 2018, 57, 11667-11672.	7.2	110
44	C1q-Mediated Complement Activation and C3 Opsonization Trigger Recognition of Stealth Poly(2-methyl-2-oxazoline)-Coated Silica Nanoparticles by Human Phagocytes. ACS Nano, 2018, 12, 5834-5847.	7.3	86
45	The Role of Cu ⁰ in Surface-Initiated Atom Transfer Radical Polymerization: Tuning Catalyst Dissolution for Tailoring Polymer Interfaces. Macromolecules, 2018, 51, 6825-6835.	2.2	44
46	Nanoassemblies of Tissue-Reactive, Polyoxazoline Graft-Copolymers Restore the Lubrication Properties of Degraded Cartilage. ACS Nano, 2017, 11, 2794-2804.	7.3	72
47	Physical Networks of Metal-Ion-Containing Polymer Brushes Show Fully Tunable Swelling, Nanomechanical and Nanotribological Properties. Macromolecules, 2017, 50, 2495-2503.	2.2	14
48	Effects of Lateral Deformation by Thermoresponsive Polymer Brushes on the Measured Friction Forces. Langmuir, 2017, 33, 4164-4171.	1.6	22
49	Loops and Cycles at Surfaces: The Unique Properties of Topological Polymer Brushes. Chemistry - A European Journal, 2017, 23, 12433-12442.	1.7	55
50	Host–guest driven ligand replacement on monodisperse inorganic nanoparticles. Nanoscale, 2017, 9, 8925-8929.	2.8	6
51	Rücktitelbild: Nextâ€Ceneration Polymer Shells for Inorganic Nanoparticles are Highly Compact, Ultraâ€Dense, and Longâ€Lasting Cyclic Brushes (Angew. Chem. 16/2017). Angewandte Chemie, 2017, 129, 4702-4702.	1.6	0
52	Nextâ€Generation Polymer Shells for Inorganic Nanoparticles are Highly Compact, Ultraâ€Dense, and Longâ€Lasting Cyclic Brushes. Angewandte Chemie - International Edition, 2017, 56, 4507-4511.	7.2	86
53	Nextâ€Generation Polymer Shells for Inorganic Nanoparticles are Highly Compact, Ultraâ€Dense, and Longâ€Lasting Cyclic Brushes. Angewandte Chemie, 2017, 129, 4578-4582.	1.6	14
54	Fabrication and Interfacial Properties of Polymer Brush Gradients by Surface-Initiated Cu(0)-Mediated Controlled Radical Polymerization. Macromolecules, 2017, 50, 2436-2446.	2.2	61

Edmondo Maria Benetti

#	Article	IF	CITATIONS
55	Controlled Crosslinking Is a Tool To Precisely Modulate the Nanomechanical and Nanotribological Properties of Polymer Brushes. Macromolecules, 2017, 50, 2932-2941.	2.2	45
56	Controlling Enzymatic Polymerization from Surfaces with Switchable Bioaffinity. Biomacromolecules, 2017, 18, 4261-4270.	2.6	31
57	Topology Effects on the Structural and Physicochemical Properties of Polymer Brushes. Macromolecules, 2017, 50, 7760-7769.	2.2	86
58	Frontispiece: Loops and Cycles at Surfaces: The Unique Properties of Topological Polymer Brushes. Chemistry - A European Journal, 2017, 23, .	1.7	0
59	Covalent Binding of Bone Morphogenetic Proteinâ€⊋ and Transforming Growth Factorâ€Î²3 to 3D Plotted Scaffolds for Osteochondral Tissue Regeneration. Biotechnology Journal, 2017, 12, 1700072.	1.8	46
60	Modulation of Surface-Initiated ATRP by Confinement: Mechanism and Applications. Macromolecules, 2017, 50, 5711-5718.	2.2	21
61	A triaxial supramolecular weave. Nature Chemistry, 2017, 9, 1068-1072.	6.6	76
62	Berichtigung: Topological Polymer Chemistry Enters Surface Science: Linear versus Cyclic Polymer Brushes. Angewandte Chemie, 2017, 129, 2272-2272.	1.6	1
63	Easy to Apply Polyoxazoline-Based Coating for Precise and Long-Term Control of Neural Patterns. Langmuir, 2017, 33, 8594-8605.	1.6	35
64	Polyoxazoline biointerfaces by surface grafting. European Polymer Journal, 2017, 88, 470-485.	2.6	65
65	Immobilization of Colloidal Monolayers at Fluid–Fluid Interfaces. Gels, 2016, 2, 19.	2.1	5
66	ATR-IR Investigation of Solvent Interactions with Surface-Bound Polymers. Langmuir, 2016, 32, 7588-7595.	1.6	11
67	Size ontrolled Formation of Nobleâ€Metal Nanoparticles in Aqueous Solution with a Thiolâ€Free Tripeptide. Angewandte Chemie, 2016, 128, 8684-8687.	1.6	8
68	Size ontrolled Formation of Nobleâ€Metal Nanoparticles in Aqueous Solution with a Thiolâ€Free Tripeptide. Angewandte Chemie - International Edition, 2016, 55, 8542-8545.	7.2	21
69	Titelbild: Topological Polymer Chemistry Enters Surface Science: Linear versus Cyclic Polymer Brushes (Angew. Chem. 50/2016). Angewandte Chemie, 2016, 128, 15671-15671.	1.6	1
70	Mimicking natural cell environments: design, fabrication and application of bio-chemical gradients on polymeric biomaterial substrates. Journal of Materials Chemistry B, 2016, 4, 4244-4257.	2.9	37
71	Crosslinking Polymer Brushes with Ethylene Glycol-Containing Segments: Influence on Physicochemical and Antifouling Properties. Langmuir, 2016, 32, 10317-10327.	1.6	51
72	Cell Adhesion: Stem ell Clinging by a Thread: AFM Measure of Polymerâ€Brush Lateral Deformation (Adv. Mater. Interfaces 3/2016). Advanced Materials Interfaces, 2016, 3, .	1.9	2

#	Article	IF	CITATIONS
73	Topological Polymer Chemistry Enters Surface Science: Linear versus Cyclic Polymer Brushes. Angewandte Chemie - International Edition, 2016, 55, 15583-15588.	7.2	149
74	Topological Polymer Chemistry Enters Surface Science: Linear versus Cyclic Polymer Brushes. Angewandte Chemie, 2016, 128, 15812-15817.	1.6	27
75	Titelbild: Size-Controlled Formation of Noble-Metal Nanoparticles in Aqueous Solution with a Thiol-Free Tripeptide (Angew. Chem. 30/2016). Angewandte Chemie, 2016, 128, 8599-8599.	1.6	Ο
76	Understanding the effect of hydrophobic protecting blocks on the stability and biopassivity of polymer brushes in aqueous environments: A TiramisÃ1 for cell-culture applications. Polymer, 2016, 98, 470-480.	1.8	33
77	Stem ell Clinging by a Thread: AFM Measure of Polymerâ€Brush Lateral Deformation. Advanced Materials Interfaces, 2016, 3, 1500456.	1.9	40
78	Lateral Deformability of Polymer Brushes by AFM-Based Method. Chimia, 2015, 69, 709.	0.3	0
79	Creeping Proteins in Microporous Structures: Polymer Brushâ€Assisted Fabrication of 3D Gradients for Tissue Engineering. Advanced Healthcare Materials, 2015, 4, 1169-1174.	3.9	39
80	Ultrathin, freestanding, stimuli-responsive, porous membranes from polymer hydrogel-brushes. Nanoscale, 2015, 7, 13017-13025.	2.8	39
81	Ultrastable Suspensions of Polyoxazoline-Functionalized ZnO Single Nanocrystals. Chemistry of Materials, 2015, 27, 2957-2964.	3.2	25
82	Amplified Responsiveness of Multilayered Polymer Grafts: Synergy between Brushes and Hydrogels. Macromolecules, 2015, 48, 7106-7116.	2.2	36
83	Stratified Polymer Grafts: Synthesis and Characterization of Layered â€~Brush' and â€~Gel' Structures. Advanced Materials Interfaces, 2014, 1, 1300007.	1.9	44
84	Polymer brush coatings regulating cell behavior: Passive interfaces turn into active. Acta Biomaterialia, 2014, 10, 2367-2378.	4.1	74
85	Polystyrene/TiO2 composite electrospun fibers as fillers for poly(butylene succinate-co-adipate): Structure, morphology and properties. European Polymer Journal, 2014, 50, 78-86.	2.6	28
86	Polymeric Thin Films: Stratified Polymer Grafts: Synthesis and Characterization of Layered â€~Brush' and â€~Gel' Structures (Adv. Mater. Interfaces 1/2014). Advanced Materials Interfaces, 2014, 1, n/a-n/a.	1.9	1
87	Tuning Surface Mechanical Properties by Amplified Polyelectrolyte Self-Assembly: Where "Grafting-from―Meets "Grafting-to― ACS Applied Materials & Interfaces, 2013, 5, 4913-4920.	4.0	12
88	Thin Polymer Brush Decouples Biomaterial's Micro-/Nanotopology and Stem Cell Adhesion. Langmuir, 2013, 29, 13843-13852.	1.6	31
89	Conjugated Polymers in Cages: Templating Poly(3â€hexylthiophene) Nanocrystals by Inert Gel Matrices. Advanced Materials, 2012, 24, 5636-5641.	11.1	10
90	Lubrication with Oil-Compatible Polymer Brushes. Tribology Letters, 2012, 45, 477-487.	1.2	64

#	Article	IF	CITATIONS
91	Self-Assembly of Focal Point Oligo-catechol Ethylene Glycol Dendrons on Titanium Oxide Surfaces: Adsorption Kinetics, Surface Characterization, and Nonfouling Properties. Journal of the American Chemical Society, 2011, 133, 10940-10950.	6.6	185
92	Grafting mixed responsive brushes of poly(N-isopropylacrylamide) and poly(methacrylic acid) from gold by selective initiation. Polymer Chemistry, 2011, 2, 879.	1.9	49
93	Surface-Grafted, Covalently Cross-Linked Hydrogel Brushes with Tunable Interfacial and Bulk Properties. Macromolecules, 2011, 44, 5344-5351.	2.2	94
94	Nanostructured Polymer Brushes by UVâ€Assisted Imprint Lithography and Surfaceâ€Initiated Polymerization for Biological Functions. Advanced Functional Materials, 2011, 21, 2088-2095.	7.8	29
95	Surfaceâ€Grafted Gelâ€Brush/Metal Nanoparticle Hybrids. Advanced Functional Materials, 2010, 20, 939-944.	7.8	60
96	A Brushâ€Gel/Metalâ€Nanoparticle Hybrid Film as an Efficient Supported Catalyst in Glass Microreactors. Chemistry - A European Journal, 2010, 16, 12406-12411.	1.7	77
97	The role of the interplay between polymer architecture and bacterial surface properties on the microbial adhesion to polyoxazoline-based ultrathin films. Biomaterials, 2010, 31, 9462-9472.	5.7	114
98	Characterization and molecular engineering of surface-grafted polymer brushes across the length scales by atomic force microscopy. Journal of Materials Chemistry, 2010, 20, 4981.	6.7	63
99	Enzyme-functionalized polymer brush films on the inner wall of silicon–glass microreactors with tunable biocatalytic activity. Lab on A Chip, 2010, 10, 3407.	3.1	60
100	pH Responsive Polymeric Brush Nanostructures: Preparation and Characterization by Scanning Probe Oxidation and Surface Initiated Polymerization. Macromolecular Rapid Communications, 2009, 30, 411-417.	2.0	30
101	Temperature-modulated quenching of quantum dots covalently coupled to chain ends of poly(<i>N</i> -isopropyl acrylamide) brushes on gold. Nanotechnology, 2009, 20, 185501.	1.3	34
102	Poly(methacrylic acid) Grafts Grown from Designer Surfaces: The Effect of Initiator Coverage on Polymerization Kinetics, Morphology, and Properties. Macromolecules, 2009, 42, 1640-1647.	2.2	46
103	Buried, Covalently Attached RGD Peptide Motifs in Poly(methacrylic acid) Brush Layers: The Effect of Brush Structure on Cell Adhesion. Langmuir, 2008, 24, 10996-11002.	1.6	79
104	Preparation and characterization of macromolecular "hedge―brushes grafted from Au nanowires. Journal of Materials Chemistry, 2007, 17, 3293.	6.7	34
105	Tunable Thermoresponsive Polymeric Platforms on Gold by "Photoiniferter―Based Surface Grafting. Advanced Materials, 2007, 19, 268-271.	11.1	103
106	Morphological and structural characterization of polypropylene based nanocomposites. Polymer, 2005, 46, 8275-8285.	1.8	64