List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5102735/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Hysteresis of Potential-Dependent Changes in Ion Density and Structure of an Ionic Liquid on a Gold Electrode: In Situ Observation by Surface-Enhanced Infrared Absorption Spectroscopy. Journal of Physical Chemistry Letters, 2013, 4, 3110-3114.	4.6	121
2	Chain-length-dependent change in the structure of self-assembled monolayers ofn-alkanethiols on Au(111) probed by broad-bandwidth sum frequency generation spectroscopy. Journal of Chemical Physics, 2003, 118, 1904-1911.	3.0	114
3	New Class of Ag/AgCl Electrodes Based on Hydrophobic Ionic Liquid Saturated with AgCl. Analytical Chemistry, 2007, 79, 7187-7191.	6.5	106
4	Wide Electrochemical Window at the Interface between Water and a Hydrophobic Room-Temperature Ionic Liquid of Tetrakis[3,5-bis(Trifluoromethyl)phenyl]borate. Analytical Chemistry, 2006, 78, 2726-2731.	6.5	95
5	Oxygen chemical potential variation in ceria-based solid oxide fuel cells determined by Raman spectroscopy. Solid State Ionics, 2000, 135, 481-485.	2.7	92
6	Ionic multilayers at the free surface of an ionic liquid, trioctylmethylammonium bis(nonafluorobutanesulfonyl)amide, probed by x-ray reflectivity measurements. Journal of Chemical Physics, 2010, 132, 164705.	3.0	76
7	Ultraslow relaxation of the structure at the ionic liquid gold electrode interface to a potential step probed by electrochemical surface plasmon resonance measurements: asymmetry of the relaxation time to the potential-step direction. Physical Chemistry Chemical Physics, 2013, 15, 11615.	2.8	75
8	Facilitated Transfer of Alkali-Metal Cations by Dibenzo-18-crown-6 across the Electrochemically Polarized Interface between an Aqueous Solution and a Hydrophobic Room-Temperature Ionic Liquid. Analytical Chemistry, 2006, 78, 5805-5812.	6.5	71
9	Fluorine-free and hydrophobic room-temperature ionic liquids, tetraalkylammonium bis(2-ethylhexyl)sulfosuccinates, and their ionic liquid–water two-phase properties. Green Chemistry, 2006, 8, 349.	9.0	70
10	Effects of pulse width on nascent laser-induced bubbles for underwater laser-induced breakdown spectroscopy. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2014, 97, 94-98.	2.9	65
11	On-Site Quantitative Elemental Analysis of Metal Ions in Aqueous Solutions by Underwater Laser-Induced Breakdown Spectroscopy Combined with Electrodeposition under Controlled Potential. Analytical Chemistry, 2015, 87, 1655-1661.	6.5	64
12	Simultaneous observation of nascent plasma and bubble induced by laser ablation in water with various pulse durations. Journal of Applied Physics, 2015, 117, 173304.	2.5	60
13	Ultraslow Response of Interfacial Tension to the Change in the Phase-Boundary Potential at the Interface between Water and a Room-Temperature Ionic Liquid, Trioctylmethylammonium bis(nonafluorobutanesulfonyl)amide. Journal of Physical Chemistry B, 2009, 113, 3273-3276.	2.6	47
14	Ion Distribution and Hydration Structure in the Stern Layer on Muscovite Surface. Langmuir, 2017, 33, 3892-3899.	3.5	47
15	Temperature Dependence of Multilayering at the Free Surface of Ionic Liquids Probed by X-ray Reflectivity Measurements. Langmuir, 2011, 27, 7531-7536.	3.5	46
16	AC-Modulated Voltfluorometric Study of the Transient Adsorption of Rose Bengal Dianions in the Transfer across the 1,2-Dichloroethane Water Interface. Journal of Physical Chemistry B, 2001, 105, 8162-8169.	2.6	45
17	Electrochemical Instability in the Transfer of Cationic Surfactant across the 1,2-Dichloroethane/Water Interface. Langmuir, 2004, 20, 875-881.	3.5	44
18	Use of Highly Hydrophobic Ionic Liquids for Ion-selective Electrodes of the Liquid Membrane Type. Analytical Sciences, 2008, 24, 1315-1320.	1.6	44

#	Article	IF	CITATIONS
19	Charging current probing of the slow relaxation of the ionic liquid double layer at the Pt electrode. Electrochemistry Communications, 2011, 13, 1365-1368.	4.7	41
20	Interfacial Structure at the Quaternary Ammonium-Based Ionic Liquids Gold Electrode Interface Probed by Surface-Enhanced Infrared Absorption Spectroscopy: Anion Dependence of the Cationic Behavior. Journal of Physical Chemistry C, 2017, 121, 1658-1666.	3.1	41
21	Transfer of the Species Dissolved in a Liquid into Laser Ablation Plasma: An Approach Using Emission Spectroscopy. Journal of Physical Chemistry C, 2015, 119, 26506-26511.	3.1	40
22	Potential-induced restructuring dynamics of ionic liquids on a gold electrode: Steric effect of constituent ions studied by surface-enhanced infrared absorption spectroscopy. Journal of Electroanalytical Chemistry, 2017, 800, 126-133.	3.8	36
23	Voltammetry of Ion Transfer across the Electrochemically Polarized Micro Liquid-Liquid Interface between Water and a Room-temperature Ionic Liquid, Tetrahexylammonium Bis(trifluoromethylsulfonyl)imide, Using a Glass Capillary Micropipette. Analytical Sciences, 2006, 22, 667-671.	1.6	35
24	Dendritic nanofibers of gold formed by the electron transfer at the interface between water and a highly hydrophobic ionic liquid. Chemical Communications, 2015, 51, 13638-13641.	4.1	35
25	Stability Evaluation of Cation Bridging on Muscovite Surface for Improved Description of Ion-Specific Wettability Alteration. Journal of Physical Chemistry C, 2017, 121, 9273-9281.	3.1	35
26	Regular Irregularity in the Transfer of Anionic Surfactant across the Liquid/Liquid Interface. ChemPhysChem, 2003, 4, 179-185.	2.1	32
27	Potential dependent structure of an ionic liquid at ionic liquid/water interface probed by x-ray reflectivity measurements. Journal of Electroanalytical Chemistry, 2015, 759, 129-136.	3.8	32
28	A digital simulation study of steady-state voltammograms for the ion transfer across the liquid–liquid interface formed at the orifice of a micropipette. Journal of Electroanalytical Chemistry, 2008, 621, 297-303.	3.8	31
29	Structure of the Electrical Double Layer on the Aqueous Solution Side of the Polarized Interface between Water and a Room-Temperature Ionic Liquid, Tetrahexylammonium Bis(trifluoromethylsulfonyl)imide. Langmuir, 2007, 23, 925-929.	3.5	29
30	Potential-Dependent Structure of the Ionic Layer at the Electrode Interface of an Ionic Liquid Probed Using Neutron Reflectometry. Journal of Physical Chemistry C, 2019, 123, 9223-9230.	3.1	29
31	Polarized Potential Window Available at the Interface Between an Aqueous Electrolyte Solution and Tetraalkylammonium Imide Salts. Electrochemistry, 2004, 72, 833-835.	1.4	29
32	Phase Separation of Ternary Self-Assembled Monolayers into Hydrophobic 1-Dodecanethiol Domains and Electrostatically Stabilized Hydrophilic Domains Composed of 2-Aminoethanethiol and 2-Mercaptoethanesulfonic Acid on Au(111). Langmuir, 2005, 21, 10581-10586.	3.5	28
33	Molecular Dynamics Simulation of Atomic Force Microscopy at the Water–Muscovite Interface: Hydration Layer Structure and Force Analysis. Langmuir, 2016, 32, 3608-3616.	3.5	28
34	Electrocapillarity at the nonpolarized interface between the aqueous solution and the room-temperature molten salt composed of 1-octyl-3-methylimidazolium bis(pentafluoroethylsulfonyl)imide. Physical Chemistry Chemical Physics, 2004, 6, 4445.	2.8	27
35	Electroneutrality Coupling of Electron Transfer at an Electrode Surface and Ion Transfer across the Interface between Thin-layer of 1-Octyl-3-methylimidazolium Bis(perfluoroalkylsulfonyl)imide Covering the Electrode Surface and an Outer Electrolyte Solution. Analytical Sciences, 2004, 20, 1553-1557.	1.6	27
36	A comparison of the ultraslow relaxation processes at the ionic liquid water interface for three hydrophobic ionic liquids. Electrochemistry Communications, 2010, 12, 1479-1482.	4.7	26

#	Article	IF	CITATIONS
37	Electrocapillarity and zero-frequency differential capacitance at the interface between mercury and ionic liquids measured using the pendant drop method. Physical Chemistry Chemical Physics, 2015, 17, 5219-5226.	2.8	24
38	Surface Structure of a Hydrophobic Ionic Liquid Probed by Spectroscopic Ellipsometry. Journal of Physical Chemistry C, 2012, 116, 5097-5102.	3.1	23
39	Ionic Liquid Water Interface: A New Electrified System for Electrochemistry. Electrochemistry, 2006, 74, 942-948.	1.4	22
40	Interfacial Ion Pairing at the Interface between Water and a Room-Temperature Ionic Liquid, N-Tetradecylisoquinolinium Bis(pentafluoroethylsulfonyl)imide. Langmuir, 2007, 23, 7608-7611.	3.5	22
41	Voltammetric Manifestation of the Ultraslow Dynamics at the Interface between Water and an Ionic Liquid. ChemPhysChem, 2010, 11, 2912-2918.	2.1	21
42	A relationship between the force curve measured by atomic force microscopy in an ionic liquid and its density distribution on a substrate. Physical Chemistry Chemical Physics, 2017, 19, 30504-30512.	2.8	21
43	Janus-Type Gold/Polythiophene Composites Formed via Redox Reaction at the Ionic Liquid Water Interface. Langmuir, 2018, 34, 2441-2447.	3.5	20
44	Effect of Switching the Length of Alkyl Chains on Electric Double Layer Structure and Differential Capacitance at the Electrode Interface of Quaternary Ammonium-Based Ionic Liquids Studied Using Molecular Dynamics Simulation. Journal of Physical Chemistry C, 2020, 124, 7873-7883.	3.1	20
45	Orientation of 1-Dodecyl-4-phenylpyridinium Ions Constituting an Ionic Liquid at the Ionic Liquid Water Interface Studied by Second Harmonic Generation. Journal of Physical Chemistry C, 2007, 111, 12461-12466.	3.1	19
46	Phase Transition of a Binary Room-Temperature Ionic Liquid Composed of Bis(pentafluoroethanesulfonyl)amide Salts of Tetraheptylammonium and <i>N</i> -Tetradecylisoquinolinium and Its Surface Properties at the Ionic Liquid Water Interface. Journal of Physical Chemistry B, 2009, 113, 9321-9325.	2.6	18
47	Electrocapillarity under Ultraslow Relaxation of the Ionic Liquid Double Layer at the Interface between Trioctylmethylammonium Bis(nonafluorobutanesulfonyl)amide and Water. Journal of Physical Chemistry B, 2010, 114, 11141-11148.	2.6	18
48	Number density distribution of solvent molecules on a substrate: a transform theory for atomic force microscopy. Physical Chemistry Chemical Physics, 2016, 18, 15534-15544.	2.8	18
49	lonic liquid structure at the electrified ionic liquid Hg interface studied using in situ spectroscopic ellipsometry. Thin Solid Films, 2014, 571, 735-738.	1.8	17
50	One-dimensional Pt nanofibers formed by the redox reaction at the ionic liquid water interface. Electrochimica Acta, 2018, 282, 886-891.	5.2	17
51	Evolution and Reversible Polarity of Multilayering at the Ionic Liquid/Water Interface. Journal of Physical Chemistry B, 2020, 124, 6412-6419.	2.6	17
52	Characterization of Electrodeposited Gold and Palladium Nanowire Gratings with Optical Diffraction Measurements. Analytical Chemistry, 2009, 81, 5585-5592.	6.5	16
53	Comparison of the overall temporal behavior of the bubbles produced by short- and long-pulse nanosecond laser ablations in water using a laser-beam-transmission probe. Applied Physics A: Materials Science and Processing, 2016, 122, 1.	2.3	16
54	Anion dependence of camel-shape capacitance at the interface between mercury and ionic liquids studied using pendant drop method. Journal of Electroanalytical Chemistry, 2017, 789, 108-113.	3.8	16

#	Article	IF	CITATIONS
55	Wide Polarized Potential Windows at the Interface between Water and an Ionic Liquid, Tetraheptylammonium Tetrakis[3,5-bis(trifluoromethyl)phenyl]borate. Chemistry Letters, 2007, 36, 1166-1167.	1.3	15
56	A calibration-free approach for on-site multi-element analysis of metal ions in aqueous solutions by electrodeposition-assisted underwater laser-induced breakdown spectroscopy. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2016, 118, 45-55.	2.9	15
57	Surface Structure of Quaternary Ammonium-Based Ionic Liquids Studied Using Molecular Dynamics Simulation: Effect of Switching the Length of Alkyl Chains. Journal of Physical Chemistry C, 2019, 123, 7246-7258.	3.1	14
58	Orientation of o-, m-, and p-Methylbenzylmercaptans Adsorbed on Au(111) Probed by Broad-Bandwidth Sum Frequency Generation Spectroscopy. Langmuir, 2003, 19, 6187-6192.	3.5	13
59	Electrochemical surface plasmon resonance as a probe of redox reactions at the ionic liquid gold interface. Journal of Electroanalytical Chemistry, 2018, 817, 210-216.	3.8	13
60	Template-Free and Spontaneous Formation of Vertically Aligned Pd Nanofiber Arrays at the Liquid–Liquid Interface between Redox-Active Ionic Liquid and Water. ACS Applied Materials & Interfaces, 2019, 11, 23731-23740.	8.0	13
61	One-step fabrication of Au@Pd core-shell bimetallic nanofibers at the interface between water and redox-active ionic liquid. Electrochimica Acta, 2019, 325, 134919.	5.2	12
62	Electrochemical surface plasmon resonance measurements of camel-shaped static capacitance and slow dynamics of electric double layer structure at the ionic liquid/electrode interface. Journal of Chemical Physics, 2020, 153, 044707.	3.0	12
63	Signal enhancement in underwater long-pulse laser-induced breakdown spectroscopy for the analysis of bulk water. Journal of Analytical Atomic Spectrometry, 2021, 36, 1170-1179.	3.0	12
64	Hydrophobic Ionic Liquids Composed of Perfluoroalkyltrifluoroborates for Ionic Liquid–Water Two-Phase Systems. Bulletin of the Chemical Society of Japan, 2009, 82, 86-92.	3.2	11
65	Differential pulse stripping voltammetry of moderately hydrophobic ions based on hydrophobic ionic liquid membranes supported on the Ag/AgCl electrode. Journal of Electroanalytical Chemistry, 2011, 656, 102-105.	3.8	11
66	Ionic Liquid-in-Water Emulsion-templated Synthesis of Gold Nanoshells at the Liquid-Liquid Interface between Water and Primary Ammonium-based Ionic Liquids. Chemistry Letters, 2019, 48, 589-592.	1.3	11
67	Effect of cation species on surface-induced phase transition observed for platinum complex anions in platinum electrodeposition using nanoporous silicon. Journal of Chemical Physics, 2014, 141, 074701.	3.0	10
68	Preparation of Dendritic Gold Nanofibers Using a Redox Reaction at the Interface between an Ionic Liquid and Water: Correlation between Viscosity and Nanostructure. Bunseki Kagaku, 2016, 65, 157-161.	0.2	10
69	Total-internal-reflection Broad-bandwidth Sum Frequency Generation Spectroscopy of Hexadecanethiol Adsorbed on Thin Gold Film Deposited on CaF2. Analytical Sciences, 2003, 19, 887-890.	1.6	9
70	Analysis of Equilibrium Electrocapillary Curves at the Interface between Hydrophobic Ionic Liquid, Trioctylmethylammonium Bis(nonafluorobutanesulfonyl)amide, and Aqueous Lithium Chloride Solutions. Journal of Chemical & Engineering Data, 2010, 55, 4463-4466.	1.9	9
71	Effects of temporal laser profile on the emission spectra for underwater laser-induced breakdown spectroscopy: Study by short-interval double pulses with different pulse durations. Journal of Applied Physics, 2015, 117, 023302.	2.5	9
72	Potential of mean force between spherical particles in an ionic liquid and its decomposition into energetic and entropic components: An analysis using an integral equation theory. Journal of Molecular Liquids, 2018, 257, 121-131.	4.9	9

#	Article	IF	CITATIONS
73	Integral equation theory based method to determine number density distribution of colloidal particles near a substrate using a force curve from colloidal probe atomic force microscopy. Journal of Molecular Liquids, 2019, 294, 111584.	4.9	9
74	Simultaneous Synthesis of One-and Two-Dimensional Gold Nanostructures/Reduced Graphene Oxide Composites in the Redox-Active Ionic Liquid/Water Interfacial System. Chemistry of Materials, 2020, 32, 6374-6383.	6.7	9
75	In-situ electrochemical SPR study of gold surface smoothing by repetitive cathodic deposition and anodic dissolution of copper in an ionic liquid. Journal of Electroanalytical Chemistry, 2020, 877, 114611.	3.8	9
76	An electric double layer structure and differential capacitance at the electrode interface of tributylmethylammonium bis(trifluoromethanesulfonyl)amide studied using a molecular dynamics simulation. Physical Chemistry Chemical Physics, 2020, 22, 5198-5210.	2.8	9
77	Evaluation of static differential capacitance at the [C ₄ mim ⁺][TFSA ^{â^²}]/electrode interface using molecular dynamics simulation combined with electrochemical surface plasmon resonance measurements. Physical Chemistry Chemical Physics. 2021. 23. 13905-13917.	2.8	9
78	Orientation Correlation of Sulfosuccinate-based Room-Temperature Ionic Liquids Studied by Polarization-Resolved Hyper-Rayleigh Scattering. Journal of Physical Chemistry B, 2009, 113, 15322-15326.	2.6	8
79	Determination of the Activity of 1-Methyl-3-octylimidazolium Bis(trifluoromethanesulfonyl)amide in Binary Ionic Liquids from the Solubility in Water. Journal of Chemical & Engineering Data, 2010, 55, 1980-1985.	1.9	8
80	Number Density Distribution of Small Particles around a Large Particle: Structural Analysis of a Colloidal Suspension. Langmuir, 2016, 32, 11063-11070.	3.5	8
81	Static Capacitance at the Electrochemical Liquid-liquid Interface Between Ionic Liquids and Eutectic Ga-In Alloy Measured Using the Pendant Drop Method. Electrochemistry, 2018, 86, 38-41.	1.4	8
82	Efficient detection of emission lines for H and O and the use as an internal standard for underwater LIBS. Journal of Analytical Atomic Spectrometry, 2021, 36, 345-351.	3.0	8
83	Concentration-dependent switching of the mode of phase separation in ternary self-assembled monolayers of 2-mercaptoethane sulfonic acid, 2-aminoethanethiol and 1-dodecanethiol on Au(111). Journal of Electroanalytical Chemistry, 2007, 600, 35-44.	3.8	7
84	Artificially phase-separated binary self-assembled monolayers composed of 11-amino-1-undecanethiolate and 10-carboxy-1-decanethiolate on Au(111): A comparative study of two preparing methods. Electrochimica Acta, 2008, 53, 4900-4906.	5.2	7
85	How Viscous Is the Solidlike Structure at the Interface of Ionic Liquids? A Study Using Total Internal Reflection Fluorescence Spectroscopy with a Fluorescent Molecular Probe Sensitive to High Viscosity. Langmuir, 2020, 36, 10397-10403.	3.5	7
86	Simultaneous detection of a submerged Cu target and bulk water by long-pulse laser-induced breakdown spectroscopy. Journal of Analytical Atomic Spectrometry, 2021, 36, 1960-1968.	3.0	7
87	Analysis of pulse-to-pulse fluctuation in underwater Laser-Induced Breakdown Spectroscopy on the basis of error propagation calculation. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2021, 183, 106271.	2.9	7
88	Potential dependence of the ionic structure at the ionic liquid/water interface studied using MD simulation. Physical Chemistry Chemical Physics, 2021, 23, 22367-22374.	2.8	7
89	Title is missing!. Russian Journal of Electrochemistry, 2003, 39, 125-129.	0.9	6
90	Lateral Growth of Polypyrrole Electropolymerized along Hydrophobic Insulative Substrates. ECS Electrochemistry Letters, 2014, 3, G5-G7.	1.9	6

#	Article	IF	CITATIONS
91	Spontaneous Formation of Microgroove Arrays on the Surface of pâ€Type Porous Silicon Induced by a Turing Instability in Electrochemical Dissolution. ChemPhysChem, 2015, 16, 1613-1618.	2.1	6
92	Force measurement reveals structure of a confined liquid: Observation of the impenetrable space. Surface Science, 2015, 641, 242-246.	1.9	6
93	Stratification of Colloidal Particles on a Surface: Study by a Colloidal Probe Atomic Force Microscopy Combined with a Transform Theory. Journal of Physical Chemistry B, 2018, 122, 4592-4599.	2.6	6
94	Interface-templated synthesis of single-crystalline silver chain-like nanobelts at the liquid-liquid interface between water and redox-active ionic liquid. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 597, 124747.	4.7	6
95	Electrochemical liquid-liquid interface between oil and ionic liquid for reductive deposition of metal nanostructures. Journal of Electroanalytical Chemistry, 2021, 881, 114959.	3.8	6
96	In Situ Surface Roughness Analysis of Electrodeposited Co Films in an Ionic Liquid Using Electrochemical Surface Plasmon Resonance: Effect of Leveling Additives. Journal of the Electrochemical Society, 2021, 168, 072505.	2.9	6
97	Overscreening Induced by Ionic Adsorption at the Ionic Liquid/Electrode Interface Detected Using Neutron Reflectometry with a Rational Material Design. Bulletin of the Chemical Society of Japan, 2021, 94, 2914-2918.	3.2	6
98	In Situ Electrochemical Surface Plasmon Resonance Study on Lithium Underpotential Deposition and Stripping in Bis(fluorosulfonyl)amide-Based Ionic Liquids. Journal of Physical Chemistry C, 0, , .	3.1	6
99	Ionic Liquids as Liquid Materials for Analytical Chemistry. Analytical Sciences, 2020, 36, 1-2.	1.6	5
100	Formation of Au Nanofiber/Fullerene Nanowhisker 1D/1D Composites via Reductive Deposition at the Interface between an Ionic Liquid and Water. Chemistry Letters, 2022, 51, 643-645.	1.3	4
101	Fluorescence Lifetime Measurements of Coumarin 343 for Sub-ps Solvation Dynamics in W Aerosol-OT 1,2-Dichloroethane Reverse Micelle Systems. Bunseki Kagaku, 2005, 54, 485-494.	0.2	3
102	有é™è¦ç´æ³•ã«ã,ˆã,‹é›»æ°—化å¦å応ã®ãf‡ã,¸ã,¿ãf«ã,∙ãfŸãf¥ãf¬ãf¼ã,•ãf§ãf³. Review of Polarograph	y, 2 00 7, 53	3, 41-50.
103	Two-dimensional array of particles originating from dipole–dipole interaction as evidenced by potential curve measurements at vertical oil/water interfaces. Physical Chemistry Chemical Physics, 2014, 16, 16976-16984.	2.8	3
104	Enhancement of stratification of colloidal particles near a substrate induced by addition of non-adsorbing polymers. Chemical Physics Letters, 2019, 734, 136705.	2.6	3
105	Improvement of the Nelder-Mead method using Direct Inversion in Iterative Subspace. Optimization and Engineering, 2022, 23, 1033-1055.	2.4	3
106	Comparison of atomic force microscopy force curve and solvation structure studied by integral equation theory. Journal of Chemical Physics, 2021, 154, 164702.	3.0	3
107	Au Nanofiber/CNT 1D/1D Composites Formed Via Redox Reaction at the Ionic Liquid/Water Interface. Langmuir, 2021, 37, 9553-9559.	3.5	3
108	Interfacial viscosity and ionic reorientation probed using electrochemical surface plasmon resonance at the gold electrode interface of ionic liquids. Journal of Electroanalytical Chemistry, 2022, 913, 116299.	3.8	3

#	Article	IF	CITATIONS
109	Surface Structure of Quaternary Ammonium Based Ionic Liquid Studied Using Molecular Dynamics Simulation. Bunseki Kagaku, 2015, 64, 219-224.	0.2	2
110	An Improved Model-potential-free Analysis of the Structure Factor Obtained from a Small-angle Scattering: Acquisitions of the Pair Distribution Function and the Pair Potential. Chemistry Letters, 2020, 49, 1017-1021.	1.3	2
111	Solid Surface Induced Anisotropic Clustering in Ethanol-Cyclohexane Binary Liquids Studied by Molecular Dynamics Simulations. Chemistry Letters, 2021, 50, 1662-1666.	1.3	2
112	Slow and Fast Dynamics at the Ionic Liquid/Gold Electrode Interface Separately Probed by Electrochemical Surface Plasmon Resonance Combined with Sequential Potential Pulse Techniques. Journal of the Electrochemical Society, 2022, 169, 066501.	2.9	2
113	Optical Second Harmonic Generation Study of the Structure of the Interface between Water and an Ionic Liquid Based on N-Alkylisoquinolinium Ions. Bunseki Kagaku, 2007, 56, 491-497.	0.2	1
114	Calculation method of the number density distribution of liquid molecules or colloidal particles near a substrate from surface force apparatus measurement. Chemical Physics Letters, 2020, 754, 137666.	2.6	1
115	Molecular-level Structure at the Surface of Ionic Liquids. Oleoscience, 2015, 15, 305-310.	0.0	1
116	Correction: Number density distribution of solvent molecules on a substrate: a transform theory for atomic force microscopy. Physical Chemistry Chemical Physics, 2016, 18, 19973-19974.	2.8	0
117	Vibration of Water Sessile Drops in Various Oils. Chemistry Letters, 2017, 46, 1337-1340.	1.3	0
118	Ionic Liquid Water Interface As an Electrochemical Reaction Field for the Formation of Novel Metal Nanostructure. ECS Meeting Abstracts, 2016, , .	0.0	0
119	Adsorption Properties of Alkylsulfate Ions at the Ionic Liquid/Water Interfaces: Ionic Liquid Cation Dependence, Bunseki Kagaku, 2021, 70, 521-527,	0.2	0