Changyong Lan

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/5102532/changyong-lan-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

69
papers

2,361
citations

23
h-index

75
ext. papers

2,895
ext. citations

7.1
avg, IF

5.38
L-index

#	Paper	IF	Citations
69	Enhanced epitaxial growth of two-dimensional monolayer WS2 film with large single domains. <i>Applied Materials Today</i> , 2021 , 25, 101234	6.6	O
68	2D WS2: From Vapor Phase Synthesis to Device Applications. <i>Advanced Electronic Materials</i> , 2021 , 7, 20	0 6 688	16
67	Gate-bias instability of few-layer WSe field effect transistors <i>RSC Advances</i> , 2021 , 11, 6818-6824	3.7	2
66	Enhanced responsivity of a graphene/Si-based heterostructure broadband photodetector by introducing a WS2 interfacial layer. <i>Journal of Materials Chemistry C</i> , 2021 , 9, 3846-3853	7.1	6
65	Van der Waals PdSe2/WS2 Heterostructures for Robust High-Performance Broadband Photodetection from Visible to Infrared Optical Communication Band. <i>Advanced Optical Materials</i> , 2021 , 9, 2001991	8.1	15
64	Electrochromic and energy storage bifunctional Gd-doped WO3/Ag/WO3 films. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 10973-10982	13	10
63	2D materials beyond graphene toward Si integrated infrared optoelectronic devices. <i>Nanoscale</i> , 2020 , 12, 11784-11807	7.7	34
62	Enhanced photoelectrocatalytic performance from size effects in pure and La-doped BiFeO3 nanoparticles. <i>Applied Physics A: Materials Science and Processing</i> , 2020 , 126, 1	2.6	2
61	Sputter deposition of Ag-induced WO3 nanoisland films with enhanced electrochromic properties. <i>Journal of Alloys and Compounds</i> , 2020 , 829, 154431	5.7	4
60	Graphene/WS heterostructure saturable absorbers for ultrashort pulse generation in L-band passively mode-locked fiber lasers. <i>Optics Express</i> , 2020 , 28, 11514-11523	3.3	20
59	Gate Bias Stress Instability and Hysteresis Characteristics of InAs Nanowire Field-Effect Transistors. <i>ACS Applied Materials & District Research ACS Applied Materials & District Research Rese</i>	9.5	10
58	Artificial visual systems enabled by quasi-two-dimensional electron gases in oxide superlattice nanowires. <i>Science Advances</i> , 2020 , 6,	14.3	21
57	The origin of gate bias stress instability and hysteresis in monolayer WS2 transistors. <i>Nano Research</i> , 2020 , 13, 3278-3285	10	6
56	Flexible Near-Infrared InGaSb Nanowire Array Detectors with Ultrafast Photoconductive Response Below 20 [Js. <i>Advanced Optical Materials</i> , 2020 , 8, 2001201	8.1	10
55	Enhanced performance of near-infrared photodetectors based on InGaAs nanowires enabled by a two-step growth method. <i>Journal of Materials Chemistry C</i> , 2020 , 8, 17025-17033	7.1	7
54	A Strategy for High-Performance Photodetector based on Graphene-Si heterostructure. <i>E3S Web of Conferences</i> , 2020 , 213, 02014	0.5	
53	Utilizing a NaOH Promoter to Achieve Large Single-Domain Monolayer WS Films via Modified Chemical Vapor Deposition. <i>ACS Applied Materials & Amp; Interfaces</i> , 2019 , 11, 35238-35246	9.5	11

(2018-2019)

52	High-Performance Transparent Ultraviolet Photodetectors Based on InGaZnO Superlattice Nanowire Arrays. <i>ACS Nano</i> , 2019 , 13, 12042-12051	16.7	19
51	Transparent metal-oxide nanowires and their applications in harsh electronics. <i>Journal of Materials Chemistry C</i> , 2019 , 7, 202-217	7:1	37
50	Crystalline InGaZnO quaternary nanowires with superlattice structure for high-performance thin-film transistors. <i>Nano Research</i> , 2019 , 12, 1796-1803	10	10
49	Direct Vapor-Liquid-Solid Synthesis of All-Inorganic Perovskite Nanowires for High-Performance Electronics and Optoelectronics. <i>ACS Nano</i> , 2019 , 13, 6060-6070	16.7	63
48	A unique sandwich structure of a CoMnP/Ni2P/NiFe electrocatalyst for highly efficient overall water splitting. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 12325-12332	13	38
47	Ultra-fast photodetectors based on high-mobility indium gallium antimonide nanowires. <i>Nature Communications</i> , 2019 , 10, 1664	17.4	39
46	Synthesis of large-area uniform MoS 2 films by substrate-moving atmospheric pressure chemical vapor deposition: from monolayer to multilayer. <i>2D Materials</i> , 2019 , 6, 025030	5.9	20
45	Engineering Surface Structure of Spinel Oxides via High-Valent Vanadium Doping for Remarkably Enhanced Electrocatalytic Oxygen Evolution Reaction. <i>ACS Applied Materials & Discrete Amp; Interfaces</i> , 2019 , 11, 33012-33021	9.5	36
44	Incorporating mixed cations in quasi-2D perovskites for high-performance and flexible photodetectors. <i>Nanoscale Horizons</i> , 2019 , 4, 1342-1352	10.8	23
43	High Performance Van der Waals Graphene WS2Bi Heterostructure Photodetector. <i>Advanced Materials Interfaces</i> , 2019 , 6, 1901304	4.6	26
42	Direct Visualization of Grain Boundaries in 2D Monolayer WS2 via Induced Growth of CdS Nanoparticle Chains. <i>Small Methods</i> , 2019 , 3, 1800245	12.8	17
41	Two-dimensional perovskite materials: From synthesis to energy-related applications. <i>Materials Today Energy</i> , 2019 , 11, 61-82	7	93
40	High-Index Faceted Porous CoO Nanosheets with Oxygen Vacancies for Highly Efficient Water Oxidation. <i>ACS Applied Materials & amp; Interfaces</i> , 2018 , 10, 7079-7086	9.5	117
39	Effect of Gd-doping on electrochromic properties of sputter deposited WO3 films. <i>Journal of Alloys and Compounds</i> , 2018 , 739, 623-631	5.7	17
38	Wafer-scale synthesis of monolayer WS2 for high-performance flexible photodetectors by enhanced chemical vapor deposition. <i>Nano Research</i> , 2018 , 11, 3371-3384	10	118
37	Facile large-area autofocusing Raman mapping system for 2D material characterization. <i>Optics Express</i> , 2018 , 26, 9071-9080	3.3	6
36	Novel Series of Quasi-2D Ruddlesden-Popper Perovskites Based on Short-Chained Spacer Cation for Enhanced Photodetection. <i>ACS Applied Materials & District Science</i> , 2018 , 10, 19019-19026	9.5	58
35	Towards high-mobility In2xGa2🛘xO3 nanowire field-effect transistors. <i>Nano Research</i> , 2018 , 11, 5935-5	9 45	15

34	Layer-number determination of two-dimensional materials by optical characterization. <i>Chinese Optics Letters</i> , 2018 , 16, 020006	2.2	2
33	Enhanced Negative Photoconductivity in InAs Nanowire Phototransistors Surface-Modified with Molecular Monolayers. <i>Advanced Materials Interfaces</i> , 2018 , 5, 1701104	4.6	14
32	Nonpolar-Oriented Wurtzite InP Nanowires with Electron Mobility Approaching the Theoretical Limit. <i>ACS Nano</i> , 2018 , 12, 10410-10418	16.7	22
31	Highly responsive and broadband photodetectors based on WS2Braphene van der Waals epitaxial heterostructures. <i>Journal of Materials Chemistry C</i> , 2017 , 5, 1494-1500	7.1	79
30	Transparent, flexible, and stretchable WS based humidity sensors for electronic skin. <i>Nanoscale</i> , 2017 , 9, 6246-6253	7.7	208
29	Large-Scale Synthesis of Freestanding Layer-Structured PbI and MAPbI Nanosheets for High-Performance Photodetection. <i>Advanced Materials</i> , 2017 , 29, 1702759	24	78
28	Reactive Sputter Deposition of WO3/Ag/WO3 Film for Indium Tin Oxide (ITO)-Free Electrochromic Devices. <i>ACS Applied Materials & amp; Interfaces</i> , 2016 , 8, 3861-7	9.5	58
27	ZnOWS2 heterostructures for enhanced ultra-violet photodetectors. <i>RSC Advances</i> , 2016 , 6, 67520-675	5 24 .7	38
26	Zener Tunneling and Photoresponse of a WS2/Si van der Waals Heterojunction. <i>ACS Applied Materials & ACS Applied</i> Materials &	9.5	73
25	Large-area synthesis of monolayer WSIand its ambient-sensitive photo-detecting performance. <i>Nanoscale</i> , 2015 , 7, 5974-80	7.7	172
24	Low temperature synthesis of multiwall carbon nanotubes from carbonaceous solid prepared by solgel autocombustion. <i>Materials Letters</i> , 2015 , 157, 269-272	3.3	4
23	Synthesis of single-crystalline GeS nanoribbons for high sensitivity visible-light photodetectors. Journal of Materials Chemistry C, 2015 , 3, 8074-8079	7.1	82
22	Few-layer MoS_2 grown by chemical vapor deposition as a passive Q-switcher for tunable erbium-doped fiber lasers. <i>Photonics Research</i> , 2015 , 3, A92	6	39
21	Passively \$Q\$ -Switched Erbium-Doped Fiber Laser Based on Few-Layer MoS2 Saturable Absorber. <i>IEEE Photonics Technology Letters</i> , 2015 , 27, 69-72	2.2	95
20	Passive harmonic mode-locking of Er-doped fiber laser using CVD-grown few-layer MoS 2 as a saturable absorber. <i>Chinese Physics B</i> , 2015 , 24, 084206	1.2	6
19	Ultrafast erbium-doped fiber laser mode-locked by a CVD-grown molybdenum disulfide (MoS2) saturable absorber. <i>Optics Express</i> , 2014 , 22, 17341-8	3.3	240
18	Effect of thermal annealing on the performance of WO 3 AgWO 3 transparent conductive film. <i>Thin Solid Films</i> , 2014 , 571, 134-138	2.2	17
17	Optical properties of (1 0 0) oriented ZnO:Gd films deposited by reactive radio frequency magnetron sputtering. <i>Materials Letters</i> , 2014 , 132, 116-118	3.3	10

LIST OF PUBLICATIONS

16	Synthesis and photoluminescence properties of string-like ZnO/SnO nanowire/nanosheet nano-heterostructures. <i>Journal of Alloys and Compounds</i> , 2013 , 575, 24-28	5.7	11
15	Synthesis and photoluminescence properties of SnO2/ZnO hierarchical nanostructures. <i>Physica E: Low-Dimensional Systems and Nanostructures</i> , 2012 , 44, 791-796	3	8
14	Fabrication of ZnS/SnO nanowire/nanosheet hierarchical nanoheterostructure and its photoluminescence properties. <i>CrystEngComm</i> , 2012 , 14, 8063	3.3	8
13	Controlled synthesis of ZnS nanocombs by self-evaporation using ZnS nanobelts as source and substrates. <i>CrystEngComm</i> , 2012 , 14, 708-712	3.3	18
12	Synthesis of branched Sn/carbon nanotube core/shell structures. <i>Physica E: Low-Dimensional Systems and Nanostructures</i> , 2012 , 44, 2128-2131	3	2
11	Single crystalline Cr2O3 nanowires/nanobelts: CrCl3 assistant synthesis and novel magnetic properties. <i>Applied Surface Science</i> , 2012 , 258, 8965-8969	6.7	9
10	Synthesis and photoluminescence properties of comb-like CdS nanobelt/ZnO nanorod heterostructures. <i>Applied Surface Science</i> , 2012 , 261, 385-389	6.7	4
9	Increasing the Mn doping level in semiconductor nanocrystals by solgel auto-combustion method. <i>Materials Letters</i> , 2012 , 89, 269-271	3.3	3
8	ZnxCd1\(\text{NS}\) nanocrystals synthesised by sol\(\text{gel}\) autocombustion method. <i>Materials Research Innovations</i> , 2012 , 16, 257-260	1.9	2
7	Magnetic properties of La and (La, Zr) doped BiFeO3 ceramics. <i>Journal of Materials Science</i> , 2011 , 46, 734-738	4.3	98
6	Synthesis of K6Ta10.8O30 nanowires by molten salt technique. <i>Materials Science and Engineering B: Solid-State Materials for Advanced Technology</i> , 2011 , 176, 679-683	3.1	14
5	Synthesis and magnetic properties of single-crystalline Na2-xMn8O16 nanorods. <i>Nanoscale Research Letters</i> , 2011 , 6, 133	5	11
4	Microstructures, Growth Mechanism of ZnS Nanomatrials Farbicated by Physical Vapor Deposition. <i>Advanced Materials Research</i> , 2011 , 356-360, 533-536	0.5	
3	ZnO Nanostructures and Field Emission Properties on Cu Substrate Achieved by Electrodeposition Method. <i>Advanced Materials Research</i> , 2011 , 347-353, 3388-3391	0.5	
2	Optical coupling between two nanobelts. <i>Physics Letters, Section A: General, Atomic and Solid State Physics</i> , 2009 , 373, 2061-2064	2.3	1
1	Bistable Silver Electrodeposition-Based Electrochromic Device with Reversible Three-State Optical Transformation By Using WO 3 Nanoislands Modified ITO Electrode. <i>Advanced Materials Interfaces</i> ,210	12 <i>5</i> 166	O