Jiang Lou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5102067/publications.pdf

Version: 2024-02-01

516681 610883 24 766 16 24 citations h-index g-index papers 24 24 24 720 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	In vitro gastrointestinal digestibility of corn oil-in-water Pickering emulsions stabilized by three types of nanocellulose. Carbohydrate Polymers, 2022, 277, 118835.	10.2	19
2	Strong Bacterial Cellulose-Based Films with Natural Laminar Alignment for Highly Sensitive Humidity Sensors. ACS Applied Materials & Sensors. ACS ACS Applied Materials & Sensors. ACS ACS APPLIED MATERIALS & Sensors. ACS	8.0	24
3	PhIO-Mediated Oxidative Câ•€ Bond Cleavage and Reassembly toward Highly Functionalized Oxazolones. Organic Letters, 2022, 24, 1323-1328.	4.6	1
4	TBAI/K ₂ S ₂ O ₈ -Promoted [4 + 2] Annulation of Ketene <i>N</i> , <i>S</i> -Acetals and <i>N</i> -Tosylhydrazones toward Pyridazines. Organic Letters, 2021, 23, 1606-1610.	4.6	9
5	Palladium-catalyzed benzylic C(sp3)–H arylation of o-alkylbenzaldehydes. Tetrahedron Letters, 2021, 67, 152865.	1.4	6
6	Rhodium-catalyzed enone carbonyl directed C–H activation for the synthesis of indanones containing all-carbon quaternary centers. Organic Chemistry Frontiers, 2021, 8, 1447-1453.	4. 5	13
7	Progress in Visible-Light Catalyzed C—F Bond Functionalization of ⟨i⟩gem⟨/i⟩-Difluoroalkenes. Chinese Journal of Organic Chemistry, 2021, 41, 4192.	1.3	8
8	Copper-Catalyzed Annulative Coupling of S,S-Disubstituted Enones with Diazo Compounds to Access Highly Functionalized Thiophene Derivatives. Journal of Organic Chemistry, 2020, 85, 1044-1053.	3.2	16
9	Transition-metal mediated carbon–sulfur bond activation and transformations: an update. Chemical Society Reviews, 2020, 49, 4307-4359.	38.1	197
10	Photoinduced, Copper-Catalyzed Three-Component Annulation of <i>gem</i> -Dialkylthio Enynes. Organic Letters, 2020, 22, 5202-5206.	4. 6	26
11	ZnCl ₂ â€Catalyzed [4+1] Annulation of Alkylthioâ€Substituted Enaminones and Enaminothiones with Sulfur Ylides. Chemistry - A European Journal, 2020, 26, 4941-4946.	3.3	19
12	Rhodium(III)-Catalyzed Annulative Coupling of Sulfoxonium Ylides and Allenoates: An Arene C–H Activation/Cyclopropanation Cascade. Organic Letters, 2019, 21, 9217-9222.	4. 6	53
13	Highly Regioselective C–H Alkylation of Alkenes Through an Aryl to Vinyl 1,4-Palladium Migration/C–C Cleavage Cascade. ACS Catalysis, 2019, 9, 11669-11675.	11.2	51
14	Rhodium(III)-Catalyzed Annulation of Acetophenone <i>O</i> -Acetyl Oximes with Allenoates through Arene Câ€"H Activation: An Access to Isoquinolines. Journal of Organic Chemistry, 2019, 84, 2083-2092.	3.2	23
15	Transitionâ€Metalâ€Promoted Direct Câ^'H Cyanoalkylation and Cyanoalkoxylation of Internal Alkenes via Radical Câ^'C Bond Cleavage of Cycloketone Oxime Esters. Advanced Synthesis and Catalysis, 2019, 361, 3787-3799.	4.3	25
16	Copper-Catalyzed Radical C–C Bond Cleavage and [4+1] Annulation Cascade of Cycloketone Oxime Esters with Enaminothiones. Journal of Organic Chemistry, 2019, 84, 2178-2190.	3.2	38
17	A Simple Aliphatic Diamine Auxiliary for Palladiumâ€Catalyzed Arylation of Unactivated <i>β</i> (<i>sp</i> ³)â€H Bonds. Advanced Synthesis and Catalysis, 2018, 360, 4571-4584.	4.3	14
18	Palladium-Catalyzed C–S Bond Cleavage with Allenoates: Synthesis of Tetrasubstituted 2-Alkenylfuran Derivatives. Organic Letters, 2018, 20, 6007-6011.	4.6	24

#	Article	IF	CITATION
19	\hat{l}_{\pm},\hat{l}^2 -Unsaturated <i>N</i> -Acylindoles: An Alternative Class of Michael Acceptors and Their Application in Asymmetric Borylation. Journal of Organic Chemistry, 2018, 83, 7981-7993.	3.2	11
20	Metalâ€Free C <i>sp</i> à^'C <i>sp</i> and C <i>sp</i> â^'C <i>sp</i> and C <i>sp</i> a	4.3	19
21	Iron-Catalyzed Oxidative C–H Functionalization of Internal Olefins for the Synthesis of Tetrasubstituted Furans. Organic Letters, 2017, 19, 3287-3290.	4.6	61
22	Copper-promoted direct C–H alkoxylation of S,S-functionalized internal olefins with alcohols. Organic and Biomolecular Chemistry, 2017, 15, 5535-5540.	2.8	25
23	Copper-Catalyzed Formal Carbene Migratory Insertion into Internal Olefinic Câ•C Bonds with <i>N</i> -Tosylhydrazones To Access Iminofuran and 2(3 <i>H</i>)-Furanone Derivatives. Organic Letters, 2017, 19, 3660-3663.	4.6	45
24	Ironâ€Mediated Oxidative C–H Alkylation of <i>S,S</i> â€Functionalized Internal Olefins <i>via</i> C(<i>sp</i> ²)–H/C(<i>sp</i> ³)–H Crossâ€Coupling. Advanced Synthesis and Catalysis, 2017, 359, 2981-2998.	4.3	39