Christian Schnenberger

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/5101746/christian-schonenberger-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

66 118 15,209 241 h-index g-index citations papers 260 16,542 6.35 7.1 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
241	2D materials shrink superconducting qubits <i>Nature Materials</i> , 2022 , 21, 381-382	27	0
240	Tailoring the Band Structure of Twisted Double Bilayer Graphene with Pressure. <i>Nano Letters</i> , 2021 , 21, 8777-8784	11.5	4
239	Superconductivity in type-II Weyl-semimetal WTe2 induced by a normal metal contact. <i>Journal of Applied Physics</i> , 2021 , 129, 113903	2.5	5
238	Circuit Quantum Electrodynamics with Carbon-Nanotube-Based Superconducting Quantum Circuits. <i>Physical Review Applied</i> , 2021 , 15,	4.3	4
237	Superconducting Contacts to a Monolayer Semiconductor. <i>Nano Letters</i> , 2021 , 21, 5614-5619	11.5	3
236	Operation of parallel SNSPDs at high detection rates. <i>Superconductor Science and Technology</i> , 2021 , 34, 024002	3.1	6
235	New method of transport measurements on van der Waals heterostructures under pressure. Journal of Applied Physics, 2021, 130, 064303	2.5	6
234	Radio-frequency characterization of a supercurrent transistor made of a carbon nanotube. <i>Materials for Quantum Technology</i> , 2021 , 1, 035003		
233	Spectroscopy of the local density of states in nanowires using integrated quantum dots. <i>Physical Review B</i> , 2021 , 104,	3.3	1
232	Boosting proximity spinBrbit coupling in graphene/WSe2 heterostructures via hydrostatic pressure. <i>Npj 2D Materials and Applications</i> , 2021 , 5,	8.8	11
231	Out-of-plane corrugations in graphene based van der Waals heterostructures. <i>Physical Review B</i> , 2020 , 102,	3.3	1
230	One-Dimensional Edge Transport in Few-Layer WTe. <i>Nano Letters</i> , 2020 , 20, 4228-4233	11.5	19
229	Magnetic-Field-Independent Subgap States in Hybrid Rashba Nanowires. <i>Physical Review Letters</i> , 2020 , 125, 017701	7.4	13
228	Controllable p-n junctions in three-dimensional Dirac semimetal CdAs nanowires. <i>Nanotechnology</i> , 2020 , 31, 205001	3.4	2
227	A double quantum dot spin valve. <i>Communications Physics</i> , 2020 , 3,	5.4	8
226	Compact SQUID Realized in a Double-Layer Graphene Heterostructure. <i>Nano Letters</i> , 2020 , 20, 7129-71	3£ 1.5	2
225	Large spatial extension of the zero-energy Yu-Shiba-Rusinov state in a magnetic field. <i>Nature Communications</i> , 2020 , 11, 1834	17.4	7

224	Mobility Enhancement in Graphene by in situ Reduction of Random Strain Fluctuations. <i>Physical Review Letters</i> , 2020 , 124, 157701	7.4	8	
223	In Situ Strain Tuning in hBN-Encapsulated Graphene Electronic Devices. <i>Nano Letters</i> , 2019 , 19, 4097-4	1021.5	17	
222	GHz nanomechanical resonator in an ultraclean suspended graphene p-n junction. <i>Nanoscale</i> , 2019 , 11, 4355-4361	7.7	16	
221	New Generation of Moir' Superlattices in Doubly Aligned hBN/Graphene/hBN Heterostructures. <i>Nano Letters</i> , 2019 , 19, 2371-2376	11.5	49	
220	Highly symmetric and tunable tunnel couplings in InAs/InP nanowire heterostructure quantum dots. <i>Nanotechnology</i> , 2019 , 31, 135003	3.4	10	
219	Spectroscopy of the superconducting proximity effect in nanowires using integrated quantum dots. <i>Communications Physics</i> , 2019 , 2,	5.4	17	
218	Intrinsically-limited timing jitter in molybdenum silicide superconducting nanowire single-photon detectors. <i>Journal of Applied Physics</i> , 2019 , 126, 164501	2.5	7	
217	Nonequilibrium properties of graphene probed by superconducting tunnel spectroscopy. <i>Physical Review B</i> , 2019 , 99,	3.3	3	
216	Large spin relaxation anisotropy and valley-Zeeman spin-orbit coupling in WSe2/graphene/h-BN heterostructures. <i>Physical Review B</i> , 2018 , 97,	3.3	78	
215	Blocking-state influence on shot noise and conductance in quantum dots. <i>Physical Review B</i> , 2018 , 97,	3.3	5	
214	High-detection efficiency and low-timing jitter with amorphous superconducting nanowire single-photon detectors. <i>Applied Physics Letters</i> , 2018 , 112, 061103	3.4	61	
213	Quantum-Confined Stark Effect in a MoS Monolayer van der Waals Heterostructure. <i>Nano Letters</i> , 2018 , 18, 1070-1074	11.5	38	
212	Spin transport in two-layer-CVD-hBN/graphene/hBN heterostructures. <i>Physical Review B</i> , 2018 , 97,	3.3	19	
211	Coexistence of classical snake states and Aharonov-Bohm oscillations along graphene plijunctions. <i>Physical Review B</i> , 2018 , 98,	3.3	13	
210	Cooper-pair splitting in two parallel InAs nanowires. New Journal of Physics, 2018, 20, 063021	2.9	18	
209	Signatures of van Hove Singularities Probed by the Supercurrent in a Graphene-hBN Superlattice. <i>Physical Review Letters</i> , 2018 , 121, 137701	7.4	12	
208	Wideband and On-Chip Excitation for Dynamical Spin Injection into Graphene. <i>Physical Review Applied</i> , 2018 , 10,	4.3	3	
207	Charge Noise in Organic Electrochemical Transistors. <i>Physical Review Applied</i> , 2017 , 7,	4.3	17	

206	Optically probing the detection mechanism in a molybdenum silicide superconducting nanowire single-photon detector. <i>Applied Physics Letters</i> , 2017 , 110, 083106	3.4	25
205	Fabry-PEot Resonances in a Graphene/hBN MoirEsuperlattice. <i>Nano Letters</i> , 2017 , 17, 328-333	11.5	25
204	Giant Valley-Isospin Conductance Oscillations in Ballistic Graphene. <i>Nano Letters</i> , 2017 , 17, 5389-5393	11.5	14
203	Andreev bound states probed in three-terminal quantum dots. <i>Physical Review B</i> , 2017 , 96,	3.3	28
202	Measuring a Quantum Dot with an Impedance-Matching On-Chip Superconducting LC Resonator at Gigahertz Frequencies. <i>Physical Review Applied</i> , 2017 , 8,	4.3	9
201	Restoring the Electrical Properties of CVD Graphene via Physisorption of Molecular Adsorbates. <i>ACS Applied Materials & Distributed & Dist</i>	9.5	19
200	Contactless Microwave Characterization of Encapsulated Graphene pl Junctions. <i>Physical Review Applied</i> , 2017 , 7,	4.3	1
199	Full characterization of a carbon nanotube parallel double quantum dot. <i>Physica Status Solidi (B):</i> Basic Research, 2016 , 253, 2428-2432	1.3	5
198	Spin transport in fully hexagonal boron nitride encapsulated graphene. <i>Physical Review B</i> , 2016 , 93,	3.3	37
197	Characterization of HMDS treated CVD graphene 2016 ,		1
197	Characterization of HMDS treated CVD graphene 2016, Gate-controlled conductance enhancement from quantum Hall channels along graphene p-n junctions. <i>Nanoscale</i> , 2016, 8, 19910-19916	7.7	10
	Gate-controlled conductance enhancement from quantum Hall channels along graphene p-n	7·7 3·4	
196	Gate-controlled conductance enhancement from quantum Hall channels along graphene p-n junctions. <i>Nanoscale</i> , 2016 , 8, 19910-19916 Subgap resonant quasiparticle transport in normal-superconductor quantum dot devices. <i>Applied</i>		10
196 195	Gate-controlled conductance enhancement from quantum Hall channels along graphene p-n junctions. <i>Nanoscale</i> , 2016 , 8, 19910-19916 Subgap resonant quasiparticle transport in normal-superconductor quantum dot devices. <i>Applied Physics Letters</i> , 2016 , 108, 172604 Wet etch methods for InAs nanowire patterning and self-aligned electrical contacts.	3.4	10
196 195 194	Gate-controlled conductance enhancement from quantum Hall channels along graphene p-n junctions. <i>Nanoscale</i> , 2016 , 8, 19910-19916 Subgap resonant quasiparticle transport in normal-superconductor quantum dot devices. <i>Applied Physics Letters</i> , 2016 , 108, 172604 Wet etch methods for InAs nanowire patterning and self-aligned electrical contacts. <i>Nanotechnology</i> , 2016 , 27, 195303 Role of hexagonal boron nitride in protecting ferromagnetic nanostructures from oxidation. <i>2D</i>	3.4	10
196 195 194	Gate-controlled conductance enhancement from quantum Hall channels along graphene p-n junctions. Nanoscale, 2016, 8, 19910-19916 Subgap resonant quasiparticle transport in normal-superconductor quantum dot devices. Applied Physics Letters, 2016, 108, 172604 Wet etch methods for InAs nanowire patterning and self-aligned electrical contacts. Nanotechnology, 2016, 27, 195303 Role of hexagonal boron nitride in protecting ferromagnetic nanostructures from oxidation. 2D Materials, 2016, 3, 011008 Implementing Silicon Nanoribbon Field-Effect Transistors as Arrays for Multiple Ion Detection.	3·4 3·4 5·9	10 10 6
196 195 194 193	Gate-controlled conductance enhancement from quantum Hall channels along graphene p-n junctions. Nanoscale, 2016, 8, 19910-19916 Subgap resonant quasiparticle transport in normal-superconductor quantum dot devices. Applied Physics Letters, 2016, 108, 172604 Wet etch methods for InAs nanowire patterning and self-aligned electrical contacts. Nanotechnology, 2016, 27, 195303 Role of hexagonal boron nitride in protecting ferromagnetic nanostructures from oxidation. 2D Materials, 2016, 3, 011008 Implementing Silicon Nanoribbon Field-Effect Transistors as Arrays for Multiple Ion Detection. Biosensors, 2016, 6, 21	3·4 3·4 5·9	10 10 6

(2015-2016)

188	Additional peak appearing in the one-photon luminescence of single gold nanorods. <i>Optics Letters</i> , 2016 , 41, 1325-8	3	4
187	Signatures of single quantum dots in graphene nanoribbons within the quantum Hall regime. <i>Nanoscale</i> , 2016 , 8, 11480-6	7.7	10
186	Comparative study of single and multi domain CVD graphene using large-area Raman mapping and electrical transport characterization. <i>Physica Status Solidi - Rapid Research Letters</i> , 2016 , 10, 807-811	2.5	8
185	Microwave Photodetection in an Ultraclean Suspended Bilayer Graphene p-n Junction. <i>Nano Letters</i> , 2016 , 16, 6988-6993	11.5	21
184	A success story. <i>Nature Nanotechnology</i> , 2016 , 11, 908	28.7	
183	Snake trajectories in ultraclean graphene p-n junctions. <i>Nature Communications</i> , 2015 , 6, 6470	17.4	79
182	Formation Mechanism of Metal Molecule Metal Junctions: Molecule-Assisted Migration on Metal Defects. <i>Journal of Physical Chemistry C</i> , 2015 , 119, 19438-19451	3.8	10
181	Entanglement Detection with Non-Ideal Ferromagnetic Detectors. <i>Acta Physica Polonica A</i> , 2015 , 127, 493-495	0.6	3
180	Graphene spintronics: the European Flagship perspective. 2D Materials, 2015, 2, 030202	5.9	198
179	Competing surface reactions limiting the performance of ion-sensitive field-effect transistors. <i>Sensors and Actuators B: Chemical</i> , 2015 , 220, 500-507	8.5	22
178	Gigahertz Quantized Charge Pumping in Bottom-Gate-Defined InAs Nanowire Quantum Dots. <i>Nano Letters</i> , 2015 , 15, 4585-90	11.5	18
177	Sensing with Advanced Computing Technology: Fin Field-Effect Transistors with High-k Gate Stack on Bulk Silicon. <i>ACS Nano</i> , 2015 , 9, 4872-81	16.7	46
176	Clean carbon nanotubes coupled to superconducting impedance-matching circuits. <i>Nature Communications</i> , 2015 , 6, 7165	17.4	28
175	Guiding of Electrons in a Few-Mode Ballistic Graphene Channel. <i>Nano Letters</i> , 2015 , 15, 5819-25	11.5	53
174	Ordered nanoparticle arrays interconnected by molecular linkers: electronic and optoelectronic properties. <i>Chemical Society Reviews</i> , 2015 , 44, 999-1014	58.5	61
173	Shot Noise of a Quantum Dot Measured with Gigahertz Impedance Matching. <i>Physical Review Applied</i> , 2015 , 4,	4.3	11
172	Resonant and Inelastic Andreev Tunneling Observed on a Carbon Nanotube Quantum Dot. <i>Physical Review Letters</i> , 2015 , 115, 216801	7.4	32
171	Magnetic Field Tuning and Quantum Interference in a Cooper Pair Splitter. <i>Physical Review Letters</i> , 2015 , 115, 227003	7.4	43

170	Gate tuneable beamsplitter in ballistic graphene. Applied Physics Letters, 2015, 107, 251901	3.4	35
169	Point contacts in encapsulated graphene. <i>Applied Physics Letters</i> , 2015 , 107, 183108	3.4	4
168	Fork stamping of pristine carbon nanotubes onto ferromagnetic contacts for spin-valve devices. <i>Physica Status Solidi (B): Basic Research</i> , 2015 , 252, 2496-2502	1.3	8
167	Scalable tight-binding model for graphene. <i>Physical Review Letters</i> , 2015 , 114, 036601	7.4	58
166	High-yield fabrication of nm-size gaps in monolayer CVD graphene. <i>Nanoscale</i> , 2014 , 6, 7249-54	7.7	55
165	Investigation of the dominant 1/f noise source in silicon nanowire sensors. <i>Sensors and Actuators B: Chemical</i> , 2014 , 191, 270-275	8.5	41
164	Electrolyte gate dependent high-frequency measurement of graphene field-effect transistor for sensing applications. <i>Applied Physics Letters</i> , 2014 , 104, 013102	3.4	14
163	Random telegraph signals in molecular junctions. <i>Journal of Physics Condensed Matter</i> , 2014 , 26, 474202	21.8	19
162	Sensor system including silicon nanowire ion sensitive FET arrays and CMOS readout. <i>Sensors and Actuators B: Chemical</i> , 2014 , 204, 568-577	8.5	13
161	Regulating a benzodifuran single molecule redox switch via electrochemical gating and optimization of molecule/electrode coupling. <i>Journal of the American Chemical Society</i> , 2014 , 136, 8867	- 7 6·4	84
160	Fabrication of ballistic suspended graphene with local-gating. <i>Carbon</i> , 2014 , 79, 486-492	10.4	20
159	Rendering graphene supports hydrophilic with non-covalent aromatic functionalization for transmission electron microscopy. <i>Applied Physics Letters</i> , 2014 , 104, 134103	3.4	22
158	Carbon nanotube quantum dots on hexagonal boron nitride. <i>Applied Physics Letters</i> , 2014 , 105, 023111	3.4	12
157	Entanglement witnessing and quantum cryptography with nonideal ferromagnetic detectors. <i>Physical Review B</i> , 2014 , 89,	3.3	25
156	Nonlocal spectroscopy of Andreev bound states. <i>Physical Review B</i> , 2014 , 89,	3.3	61
155	Optimized fabrication and characterization of carbon nanotube spin valves. <i>Journal of Applied Physics</i> , 2014 , 115, 174309	2.5	24
154	Large-scale fabrication of BN tunnel barriers for graphene spintronics. <i>Journal of Applied Physics</i> , 2014 , 116, 074306	2.5	40
153	Local electrical tuning of the nonlocal signals in a Cooper pair splitter. <i>Physical Review B</i> , 2014 , 90,	3.3	35

152	Ballistic interferences in suspended graphene. <i>Nature Communications</i> , 2013 , 4, 2342	17.4	141
151	High mobility graphene ion-sensitive field-effect transistors by noncovalent functionalization. <i>Nanoscale</i> , 2013 , 5, 12104-10	7.7	62
150	A Verilog-A model for silicon nanowire biosensors: From theory to verification. <i>Sensors and Actuators B: Chemical</i> , 2013 , 179, 293-300	8.5	10
149	Hydrogen plasma microlithography of graphene supported on a Si/SiO2 substrate. <i>Applied Physics Letters</i> , 2013 , 102, 071602	3.4	7
148	Physics. Two indistinguishable electrons interfere in an electronic device. <i>Science</i> , 2013 , 339, 1041-2	33.3	2
147	Selective sodium sensing with gold-coated silicon nanowire field-effect transistors in a differential setup. <i>ACS Nano</i> , 2013 , 7, 5978-83	16.7	75
146	Low-bias active control of terahertz waves by coupling large-area CVD graphene to a terahertz metamaterial. <i>Nano Letters</i> , 2013 , 13, 3193-8	11.5	139
145	Silicon nanowire ion-sensitive field-effect transistor array integrated with a CMOS-based readout chip 2013 ,		3
144	Ultraclean single, double, and triple carbon nanotube quantum dots with recessed Re bottom gates. <i>Nano Letters</i> , 2013 , 13, 4522-6	11.5	16
143	g-factor anisotropy in nanowire-based InAs quantum dots 2013 ,		9
143	g-factor anisotropy in nanowire-based InAs quantum dots 2013 , Spin symmetry of the bilayer graphene ground state. <i>Physical Review B</i> , 2013 , 87,	3.3	9
		3.3	
142	Spin symmetry of the bilayer graphene ground state. <i>Physical Review B</i> , 2013 , 87,	3·3 7·4	24
142	Spin symmetry of the bilayer graphene ground state. <i>Physical Review B</i> , 2013 , 87, Potassium sensing with membrane-coated silicon nanowire field-effect transistors 2013 ,		24
142 141 140	Spin symmetry of the bilayer graphene ground state. <i>Physical Review B</i> , 2013 , 87, Potassium sensing with membrane-coated silicon nanowire field-effect transistors 2013 , Near-unity Cooper pair splitting efficiency. <i>Physical Review Letters</i> , 2012 , 109, 157002 Kondo effect and spin-active scattering in ferromagnet-superconductor junctions. <i>Physical Review</i>	7-4	24 1 121
142 141 140	Spin symmetry of the bilayer graphene ground state. <i>Physical Review B</i> , 2013 , 87, Potassium sensing with membrane-coated silicon nanowire field-effect transistors 2013 , Near-unity Cooper pair splitting efficiency. <i>Physical Review Letters</i> , 2012 , 109, 157002 Kondo effect and spin-active scattering in ferromagnet-superconductor junctions. <i>Physical Review B</i> , 2012 , 85,	7·4 3·3	24 1 121 8 51
142 141 140 139	Spin symmetry of the bilayer graphene ground state. <i>Physical Review B</i> , 2013 , 87, Potassium sensing with membrane-coated silicon nanowire field-effect transistors 2013 , Near-unity Cooper pair splitting efficiency. <i>Physical Review Letters</i> , 2012 , 109, 157002 Kondo effect and spin-active scattering in ferromagnet-superconductor junctions. <i>Physical Review B</i> , 2012 , 85, True reference nanosensor realized with silicon nanowires. <i>Langmuir</i> , 2012 , 28, 9899-905 Understanding the electrolyte background for biochemical sensing with ion-sensitive field-effect	7·4 3·3	24 1 121 8 51

134	Quantum Hall effect in graphene with superconducting electrodes. <i>Nano Letters</i> , 2012 , 12, 1942-5	11.5	82
133	Silicon-based ion-sensitive field-effect transistor shows negligible dependence on salt concentration at constant pH. <i>ChemPhysChem</i> , 2012 , 13, 1157-60	3.2	15
132	Spontaneously gapped ground state in suspended bilayer graphene. <i>Physical Review Letters</i> , 2012 , 108, 076602	7.4	130
131	Signal-to-noise ratio in dual-gated silicon nanoribbon field-effect sensors. <i>Applied Physics Letters</i> , 2011 , 98, 012114	3.4	46
130	Graphene transistors are insensitive to pH changes in solution. <i>Nano Letters</i> , 2011 , 11, 3597-600	11.5	128
129	Conductance fluctuations in graphene devices with superconducting contacts in different charge density regimes. <i>Physica Status Solidi (B): Basic Research</i> , 2011 , 248, 2649-2652	1.3	
128	Gate-tunable split Kondo effect in a carbon nanotube quantum dot. <i>Nanotechnology</i> , 2011 , 22, 265204	3.4	8
127	Finite-bias Cooper pair splitting. <i>Physical Review Letters</i> , 2011 , 107, 136801	7.4	106
126	Hybrid superconductor-quantum dot devices. <i>Nature Nanotechnology</i> , 2010 , 5, 703-11	28.7	283
125	Ferromagnetic proximity effect in a ferromagnet-quantum-dot-superconductor device. <i>Physical Review Letters</i> , 2010 , 104, 246804	7.4	66
124	Permalloy-based carbon nanotube spin-valve. <i>Applied Physics Letters</i> , 2010 , 97, 153116	3.4	37
123	Magnetic field and contact resistance dependence of non-local charge imbalance. <i>Nanotechnology</i> , 2010 , 21, 274002	3.4	22
122	Superconductivity-enhanced conductance fluctuations in few-layer graphene. <i>Nanotechnology</i> , 2010 , 21, 274005	3.4	13
121	Nernst limit in dual-gated Si-nanowire FET sensors. <i>Nano Letters</i> , 2010 , 10, 2268-74	11.5	261
120	Cyclic conductance switching in networks of redox-active molecular junctions. <i>Nano Letters</i> , 2010 , 10, 759-64	11.5	104
119	Novel cruciform structures as model compounds for coordination induced single molecule switches. <i>Chimia</i> , 2010 , 64, 140-4	1.3	6
118	Oligoaryl Cruciform Structures as Model Compounds for Coordination-Induced Single-Molecule Switches. <i>European Journal of Organic Chemistry</i> , 2010 , 2010, 833-845	3.2	21
117	Eine Trenneinrichtung fil Quantenpaare. <i>Physik in Unserer Zeit</i> , 2010 , 41, 58-59	0.1	

(2007-2009)

116	Finite-bias visibility dependence in an electronic Mach-Zehnder interferometer. <i>Physical Review B</i> , 2009 , 79,	3.3	70
115	Cooper pair splitter realized in a two-quantum-dot Y-junction. <i>Nature</i> , 2009 , 461, 960-3	50.4	345
114	Dual Gated Silicon Nanowire Field Effect Transistors. <i>Procedia Chemistry</i> , 2009 , 1, 678-681		18
113	Tuning the Josephson current in carbon nanotubes with the Kondo effect. <i>Physical Review B</i> , 2009 , 79,	3.3	97
112	Light-controlled conductance switching of ordered metal-molecule-metal devices. <i>Nano Letters</i> , 2009 , 9, 76-80	11.5	282
111	Contact resistance dependence of crossed Andreev reflection. <i>Europhysics Letters</i> , 2009 , 87, 27011	1.6	41
110	Molecular junctions based on aromatic coupling. <i>Nature Nanotechnology</i> , 2008 , 3, 569-74	28.7	293
109	Electrical conductance of conjugated oligomers at the single molecule level. <i>Journal of the American Chemical Society</i> , 2008 , 130, 1080-4	16.4	171
108	Giant fluctuations and gate control of the g-factor in InAs nanowire quantum dots. <i>Nano Letters</i> , 2008 , 8, 3932-5	11.5	81
107	Interlinking Au nanoparticles in 2D arrays via conjugated dithiolated molecules. <i>New Journal of Physics</i> , 2008 , 10, 065019	2.9	34
106	Conductance values of alkanedithiol molecular junctions. New Journal of Physics, 2008, 10, 065018	2.9	25
105	Large oscillating nonlocal voltage in multiterminal single-wall carbon nanotube devices. <i>Physical Review B</i> , 2008 , 77,	3.3	13
104	Scaling of 1finoise in tunable break junctions. <i>Physical Review B</i> , 2008 , 78,	3.3	18
103	Spectroscopy of Molecular Junction Networks Obtained by Place Exchange in 2D Nanoparticle Arrays. <i>Journal of Physical Chemistry C</i> , 2007 , 111, 18445-18450	3.8	57
102	Mapping electron delocalization by charge transport spectroscopy in an artificial molecule. <i>Annalen Der Physik</i> , 2007 , 16, 672-677	2.6	2
101	Even-odd effect in Andreev transport through a carbon nanotube quantum dot. <i>Physical Review Letters</i> , 2007 , 99, 126602	7.4	113
100	Feedback controlled electromigration in four-terminal nanojunctions. <i>Applied Physics Letters</i> , 2007 , 91, 053118	3.4	60
99	Controlled formation of metallic nanowires via Au nanoparticle ac trapping. <i>Nanotechnology</i> , 2007 , 18, 235202	3.4	34

98	New cruciform structures: toward coordination induced single molecule switches. <i>Journal of Organic Chemistry</i> , 2007 , 72, 8337-44	4.2	60
97	Tetrathiafulvalene-based molecular nanowires. <i>Chemical Communications</i> , 2007 , 4854-6	5.8	32
96	Fabrication and characterization of freestanding Si/Cr micro- and nanospirals. <i>Microelectronic Engineering</i> , 2006 , 83, 1237-1240	2.5	30
95	Molecular Electronics. <i>Imaging & Microscopy</i> , 2006 , 8, 37-37		1
94	Reversible Formation of Molecular Junctions in 2D Nanoparticle Arrays. <i>Advanced Materials</i> , 2006 , 18, 2444-2447	24	113
93	Defining and controlling double quantum dots in single-walled carbon nanotubes. <i>Semiconductor Science and Technology</i> , 2006 , 21, S64-S68	1.8	10
92	Positive cross correlations in a normal-conducting fermionic beam splitter. <i>Physical Review Letters</i> , 2006 , 96, 046804	7.4	40
91	Controlling spin in an electronic interferometer with spin-active interfaces. <i>Europhysics Letters</i> , 2006 , 74, 320-326	1.6	28
90	Nanospintronics with carbon nanotubes. Semiconductor Science and Technology, 2006, 21, S78-S95	1.8	93
89	Charge and spin transport in carbon nanotubes. Semiconductor Science and Technology, 2006, 21, S1-S9	1.8	22
88	Molecular states in carbon nanotube double quantum dots. <i>Physical Review B</i> , 2006 , 74,	3.3	70
87	Electrical conductance of molecular junctions by a robust statistical analysis. <i>Nano Letters</i> , 2006 , 6, 2238	8 -4 25	183
86	Directional scrolling of hetero-films on Si(110) and Si(111) surfaces. <i>Microelectronic Engineering</i> , 2006 , 83, 1233-1236	2.5	2
85	Anomalous coiling of SiGe/Si and SiGe/Si/Cr helical nanobelts. <i>Nano Letters</i> , 2006 , 6, 1311-7	11.5	141
84	Electric field control of spin transport. <i>Nature Physics</i> , 2005 , 1, 99-102	16.2	305
83	Electrical conductance of atomic contacts in liquid environments. <i>Small</i> , 2005 , 1, 1067-70	11	55
82	Controllable fabrication of SiGe/Si and SiGe/Si/Cr helical nanobelts. <i>Nanotechnology</i> , 2005 , 16, 655-663	3.4	113
81	Shot-noise and conductance measurements of transparent superconductor/two-dimensional electron gas junctions. <i>Physical Review B</i> , 2005 , 72,	3.3	31

(2002-2005)

80	Electrical spin injection in multiwall carbon nanotubes with transparent ferromagnetic contacts. <i>Applied Physics Letters</i> , 2005 , 86, 112109	3.4	50
79	Resonant tunnelling through a C(60) molecular junction in a liquid environment. <i>Nanotechnology</i> , 2005 , 16, 2143-8	3.4	30
78	Kondo effect in carbon nanotubes at half filling. <i>Physical Review B</i> , 2004 , 70,	3.3	50
77	Quantum dot coupled to a normal and a superconducting lead. <i>Nanotechnology</i> , 2004 , 15, S479-S482	3.4	55
76	Conductance properties of nanotubes coupled to superconducting leads: signatures of Andreev states dynamics. <i>Solid State Communications</i> , 2004 , 131, 625-630	1.6	14
75	Observation of Fano resonances in single-wall carbon nanotubes. <i>Physical Review B</i> , 2004 , 70,	3.3	81
74	Ambipolar field-effect transistor on as-grown single-wall carbon nanotubes. <i>Nanotechnology</i> , 2003 , 14, 327-331	3.4	36
73	Quantum Shot Noise. <i>Physics Today</i> , 2003 , 56, 37-42	0.9	147
72	Intrinsic Thermal Vibrations of Suspended Doubly Clamped Single-Wall Carbon Nanotubes. <i>Nano Letters</i> , 2003 , 3, 1577-1580	11.5	78
71	Sensitivity of single multiwalled carbon nanotubes to the environment. New Journal of Physics,		
	2003 , 5, 138-138	2.9	41
70	2003, 5, 138-138 Multiple Andreev reflections in a carbon nanotube quantum dot. <i>Physical Review Letters</i> , 2003, 91, 057		149
70	Multiple Andreev reflections in a carbon nanotube quantum dot. <i>Physical Review Letters</i> , 2003 , 91, 057		149
70 69	Multiple Andreev reflections in a carbon nanotube quantum dot. <i>Physical Review Letters</i> , 2003 , 91, 057 Shot Noise in Diffusive Superconductor/Normal Metal Heterostructures 2003 , 119-133 Fabrication and superconducting properties of nanostructured SFS contacts. <i>Journal of Magnetism</i>	0 9 54	149
7° 69 68	Multiple Andreev reflections in a carbon nanotube quantum dot. <i>Physical Review Letters</i> , 2003 , 91, 057 Shot Noise in Diffusive Superconductor/Normal Metal Heterostructures 2003 , 119-133 Fabrication and superconducting properties of nanostructured SFS contacts. <i>Journal of Magnetism and Magnetic Materials</i> , 2002 , 240, 598-600 Orientation and Positioning of DNA Molecules with an Electric Field Technique. <i>Single Molecules</i> ,	0 9 54	149 1 25
7° 69 68	Multiple Andreev reflections in a carbon nanotube quantum dot. <i>Physical Review Letters</i> , 2003 , 91, 057 Shot Noise in Diffusive Superconductor/Normal Metal Heterostructures 2003 , 119-133 Fabrication and superconducting properties of nanostructured SFS contacts. <i>Journal of Magnetism and Magnetic Materials</i> , 2002 , 240, 598-600 Orientation and Positioning of DNA Molecules with an Electric Field Technique. <i>Single Molecules</i> , 2002 , 3, 189-193 UHV compatible nanostructuring technique for mesoscopic hybrid devices: application to superconductor/ferromagnet Josephson contacts. <i>Physica E: Low-Dimensional Systems and</i>	2.8	149 1 25 40
70 69 68 67 66	Multiple Andreev reflections in a carbon nanotube quantum dot. <i>Physical Review Letters</i> , 2003 , 91, 057 Shot Noise in Diffusive Superconductor/Normal Metal Heterostructures 2003 , 119-133 Fabrication and superconducting properties of nanostructured SFS contacts. <i>Journal of Magnetism and Magnetic Materials</i> , 2002 , 240, 598-600 Orientation and Positioning of DNA Molecules with an Electric Field Technique. <i>Single Molecules</i> , 2002 , 3, 189-193 UHV compatible nanostructuring technique for mesoscopic hybrid devices: application to superconductor/ferromagnet Josephson contacts. <i>Physica E: Low-Dimensional Systems and Nanostructures</i> , 2002 , 14, 341-345	2.8	149 1 25 40 4

62	Vortex motion noise in micrometer-sized thin films of the amorphous Nb0.7Ge0.3 weak-pinning superconductor. <i>Physical Review B</i> , 2002 , 66,	3.3	8
61	Electronic and Mechanical Properties of Carbon Nanotubes 2002 , 297-320		7
60	The amplitude of non-equilibrium quantum interference in metallic mesoscopic systems. <i>Europhysics Letters</i> , 2002 , 59, 437-443	1.6	14
59	Nanomechanics of microtubules. <i>Physical Review Letters</i> , 2002 , 89, 248101	7.4	276
58	Quantum dot in the Kondo regime coupled to superconductors. <i>Physical Review Letters</i> , 2002 , 89, 2568	0] .4	241
57	Andreev reflection and excess noise in diffusive SNS junctions. <i>Physica C: Superconductivity and Its Applications</i> , 2001 , 352, 61-66	1.3	
56	Physical Properties of Multi-wall Nanotubes 2001 , 329-391		31
55	Electrochemical carbon nanotube field-effect transistor. <i>Applied Physics Letters</i> , 2001 , 78, 1291-1293	3.4	237
54	Comment on Magnetoresistance and differential conductance in mutliwalled carbon nanotubes Physical Review B, 2001 , 64,	3.3	10
53	Suppression of tunneling into multiwall carbon nanotubes. <i>Physical Review Letters</i> , 2001 , 87, 166801	7.4	157
52	Shot noise by quantum scattering in chaotic cavities. <i>Physical Review Letters</i> , 2001 , 86, 2114-7	7.4	78
51	Thermopower of Mesoscopic Spin Glasses 2001 , 33-42		
50	Interference and interactions in multiwall nanotubes. <i>Physica B: Condensed Matter</i> , 2000 , 280, 384-385	2.8	3
49	The Hanbury Brown and Twiss experiment with fermions. <i>Physica E: Low-Dimensional Systems and Nanostructures</i> , 2000 , 6, 314-317	3	52
48	Multiple Andreev reflection and giant excess noise in diffusive superconductor/normal-metal/superconductor junctions. <i>Physical Review B</i> , 2000 , 62, 4079-4085	3.3	75
47	Colloidal Dispersions of Gold Rods: Synthesis and Optical Properties. <i>Langmuir</i> , 2000 , 16, 451-458	4	260
46	Mesoscopic effects in the thermopower of dilute AuFe alloys. Advances in Solid State Physics, 1999, 311	-321	
45	Nonorganic evaporation mask for superconducting nanodevices. <i>Microelectronic Engineering</i> , 1999 , 46, 149-152	2.5	20

44	Aharonov B ohm oscillations in carbon nanotubes. <i>Nature</i> , 1999 , 397, 673-675	50.4	659
43	Electrical conduction through DNA molecules. <i>Nature</i> , 1999 , 398, 407-10	50.4	951
42	Interference and Interaction in multi-wall carbon nanotubes. <i>Applied Physics A: Materials Science and Processing</i> , 1999 , 69, 283-295	2.6	254
41	1/3-shot-noise suppression in diffusive nanowires. <i>Physical Review B</i> , 1999 , 59, 2871-2880	3.3	128
40	The fermionic hanbury brown and twiss experiment. <i>Science</i> , 1999 , 284, 296-8	33.3	325
39	Contacting single template synthesized nanowires for electric measurements. <i>Microelectronic Engineering</i> , 1998 , 41-42, 571-574	2.5	9
38	Contacting carbon nanotubes selectively with low-ohmic contacts for four-probe electric measurements. <i>Applied Physics Letters</i> , 1998 , 73, 274-276	3.4	267
37	Size Dependent Thermopower in Mesoscopic AuFe Wires. <i>Physical Review Letters</i> , 1998 , 81, 2982-2985	7.4	31
36	Electrical properties of single carbon nanotubes 1998 ,		3
35	Electron heating effects in diffusive metal wires. <i>Applied Physics Letters</i> , 1997 , 71, 773-775	3.4	41
34	Microscope images individual charges. <i>Physics World</i> , 1997 , 10, 25-27	0.5	2
33	Aqueous Gold Sols of Rod-Shaped Particles. <i>Journal of Physical Chemistry B</i> , 1997 , 101, 852-854	3.4	218
32	Template Synthesis of Nanowires in Porous Polycarbonate Membranes: Electrochemistry and Morphology. <i>Journal of Physical Chemistry B</i> , 1997 , 101, 5497-5505	3.4	436
31	NMR study of the structural properties of electrodeposited Co/Cu multilayers. <i>Journal of Magnetism and Magnetic Materials</i> , 1996 , 156, 29-30	2.8	9
30	Scanning tunnelling microscope-induced oxidation of hydrogen passivated silicon surfaces. <i>Thin Solid Films</i> , 1996 , 281-282, 637-639	2.2	
29	Nanolithography on hydrogen-terminated silicon by scanning-probe microscopy. <i>Microelectronic Engineering</i> , 1996 , 32, 203-217	2.5	4
28	Preamplifier for electric-current noise measurements at low temperatures. <i>Review of Scientific Instruments</i> , 1996 , 67, 2977-2980	1.7	11
27	Nanowires Grown Electrochemically in Porous Templates. <i>Materials Research Society Symposia Proceedings</i> , 1996 , 451, 359		2

26 Shot-Noise Suppression in the Single-Electron Tunneling Regime **1996**, 317-326

25	Giant magnetoresistance of electrodeposited Co/Cu multilayers. <i>Journal of Magnetism and Magnetic Materials</i> , 1995 , 148, 455-465	2.8	102
24	Resistless high resolution optical lithography on silicon. <i>Applied Physics Letters</i> , 1995 , 67, 2989-2991	3.4	29
23	Shot-Noise Suppression in the Single-Electron Tunneling Regime. <i>Physical Review Letters</i> , 1995 , 75, 1610	0 7 14613	152
22	Fabrication of large arrays of metallic nanowires on V-grooved substrates. <i>Applied Physics Letters</i> , 1995 , 67, 1489-1491	3.4	8
21	Fabrication of metallic nanowires with a scanning tunneling microscope. <i>Applied Physics Letters</i> , 1995 , 66, 1325-1327	3.4	67
20	Nanometer lithography on silicon and hydrogenated amorphous silicon with low energy electrons. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 1995, 13, 805		43
19	Formation of Holes in Alkanethiol Monolayers on Gold. [Erratum to document cited in CA121:66567]. <i>The Journal of Physical Chemistry</i> , 1995 , 99, 469-474		2
18	Domain Structure of Self-Assembled Alkanethiol Monolayers on Gold. <i>The Journal of Physical Chemistry</i> , 1995 , 99, 3259-3271		188
17	Decapitation of tungsten field emitter tips during sputter sharpening. Surface Science, 1995 , 339, L925-I	L <u>9</u> .80	19
16	Formation of Holes in Alkanethiol Monolayers on Gold. <i>The Journal of Physical Chemistry</i> , 1994 , 98, 6826	5-6834	140
15	What Are the "Holes" in Self-Assembled Monolayers of Alkanethiols on Gold?. <i>Langmuir</i> , 1994 , 10, 611-6	544	240
14	Single-electron tunneling in double-barrier junctions by scanning tunneling microscopy. <i>Applied Surface Science</i> , 1993 , 67, 222-227	6.7	20
13	Polarization charge relaxation and the Coulomb staircase in ultrasmall double-barrier tunnel junctions. <i>Physica B: Condensed Matter</i> , 1993 , 189, 218-224	2.8	10
12	Single-Electron Tunnelling Observed At Room Temperature by Scanning-Tunnelling Microscopy. <i>Europhysics Letters</i> , 1992 , 20, 249-254	1.6	112
11	Single-electron tunneling up to room temperature. <i>Physica Scripta</i> , 1992 , T45, 289-291	2.6	37
10	Charge flow during metal-insulator contact. <i>Physical Review B</i> , 1992 , 45, 3861-3864	3.3	60
9	Characterization of a titanium nanoscopic wire by STM and SFM. <i>Nanotechnology</i> , 1991 , 2, 96-102	3.4	2

LIST OF PUBLICATIONS

8	Euminescence in scanning tunneling microscopy on IIIV nanostructures. <i>Journal of Vacuum Science</i> & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 1991 , 9, 409		93
7	Understanding magnetic force microscopy. European Physical Journal B, 1990, 80, 373-383	1.2	125
6	Nanometer resolution in luminescence microscopy of III-V heterostructures. <i>Applied Physics Letters</i> , 1990 , 56, 1564-1566	3.4	139
5	Separation of magnetic and topographic effects in force microscopy. <i>Journal of Applied Physics</i> , 1990 , 67, 7278-7280	2.5	58
4	Observation of single charge carriers by force microscopy. <i>Physical Review Letters</i> , 1990 , 65, 3162-3164	7.4	225
3	Scanning tunneling microscopy as a tool to study surface roughness of sputtered thin films. <i>Journal of Applied Physics</i> , 1989 , 66, 4258-4261	2.5	18
2	A differential interferometer for force microscopy. <i>Review of Scientific Instruments</i> , 1989 , 60, 3131-3134	1.7	163
1	Hall-effect and resistivity study of the heavy-fermion system URu2Si2. <i>Physical Review B</i> , 1987 , 35, 5375	- <u>5</u> .378	135