Christian Schnenberger

List of Publications by Citations

 $\textbf{Source:} \ https://exaly.com/author-pdf/5101746/christian-schonenberger-publications-by-citations.pdf$

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

66 118 15,209 241 h-index g-index citations papers 260 16,542 6.35 7.1 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
241	Electrical conduction through DNA molecules. <i>Nature</i> , 1999 , 398, 407-10	50.4	951
240	Aharonov B ohm oscillations in carbon nanotubes. <i>Nature</i> , 1999 , 397, 673-675	50.4	659
239	Template Synthesis of Nanowires in Porous Polycarbonate Membranes: Electrochemistry and Morphology. <i>Journal of Physical Chemistry B</i> , 1997 , 101, 5497-5505	3.4	436
238	Cooper pair splitter realized in a two-quantum-dot Y-junction. <i>Nature</i> , 2009 , 461, 960-3	50.4	345
237	The fermionic hanbury brown and twiss experiment. <i>Science</i> , 1999 , 284, 296-8	33.3	325
236	Electric field control of spin transport. <i>Nature Physics</i> , 2005 , 1, 99-102	16.2	305
235	Molecular junctions based on aromatic coupling. <i>Nature Nanotechnology</i> , 2008 , 3, 569-74	28.7	293
234	Hybrid superconductor-quantum dot devices. <i>Nature Nanotechnology</i> , 2010 , 5, 703-11	28.7	283
233	Light-controlled conductance switching of ordered metal-molecule-metal devices. <i>Nano Letters</i> , 2009 , 9, 76-80	11.5	282
232	Nanomechanics of microtubules. <i>Physical Review Letters</i> , 2002 , 89, 248101	7.4	276
231	Contacting carbon nanotubes selectively with low-ohmic contacts for four-probe electric measurements. <i>Applied Physics Letters</i> , 1998 , 73, 274-276	3.4	267
230	Nernst limit in dual-gated Si-nanowire FET sensors. <i>Nano Letters</i> , 2010 , 10, 2268-74	11.5	261
229	Colloidal Dispersions of Gold Rods: Synthesis and Optical Properties. <i>Langmuir</i> , 2000 , 16, 451-458	4	260
228	Interference and Interaction in multi-wall carbon nanotubes. <i>Applied Physics A: Materials Science and Processing</i> , 1999 , 69, 283-295	2.6	254
227	Quantum dot in the Kondo regime coupled to superconductors. <i>Physical Review Letters</i> , 2002 , 89, 25680	0 1 .4	241
226	What Are the "Holes" in Self-Assembled Monolayers of Alkanethiols on Gold?. <i>Langmuir</i> , 1994 , 10, 611-6	5144	240
225	Electrochemical carbon nanotube field-effect transistor. <i>Applied Physics Letters</i> , 2001 , 78, 1291-1293	3.4	237

224	Observation of single charge carriers by force microscopy. <i>Physical Review Letters</i> , 1990 , 65, 3162-3164	7.4	225
223	Aqueous Gold Sols of Rod-Shaped Particles. <i>Journal of Physical Chemistry B</i> , 1997 , 101, 852-854	3.4	218
222	Graphene spintronics: the European Flagship perspective. 2D Materials, 2015 , 2, 030202	5.9	198
221	Domain Structure of Self-Assembled Alkanethiol Monolayers on Gold. <i>The Journal of Physical Chemistry</i> , 1995 , 99, 3259-3271		188
220	Electrical conductance of molecular junctions by a robust statistical analysis. <i>Nano Letters</i> , 2006 , 6, 2238	4.2 5	183
219	Electrical conductance of conjugated oligomers at the single molecule level. <i>Journal of the American Chemical Society</i> , 2008 , 130, 1080-4	16.4	171
218	A differential interferometer for force microscopy. <i>Review of Scientific Instruments</i> , 1989 , 60, 3131-31343	1.7	163
217	Suppression of tunneling into multiwall carbon nanotubes. <i>Physical Review Letters</i> , 2001 , 87, 166801	7.4	157
216	Multiwall carbon nanotubes as quantum dots. <i>Physical Review Letters</i> , 2002 , 88, 156801	7-4	157
215	Shot-Noise Suppression in the Single-Electron Tunneling Regime. <i>Physical Review Letters</i> , 1995 , 75, 1610-7	7 14613	152
214	Multiple Andreev reflections in a carbon nanotube quantum dot. <i>Physical Review Letters</i> , 2003 , 91, 05706) 5 ₄	149
213	Quantum Shot Noise. <i>Physics Today</i> , 2003 , 56, 37-42	0.9	147
212	Ballistic interferences in suspended graphene. <i>Nature Communications</i> , 2013 , 4, 2342	17.4	141
211	Anomalous coiling of SiGe/Si and SiGe/Si/Cr helical nanobelts. <i>Nano Letters</i> , 2006 , 6, 1311-7	11.5	141
210	Formation of Holes in Alkanethiol Monolayers on Gold. <i>The Journal of Physical Chemistry</i> , 1994 , 98, 6826-	6834	140
209	Low-bias active control of terahertz waves by coupling large-area CVD graphene to a terahertz metamaterial. <i>Nano Letters</i> , 2013 , 13, 3193-8	11.5	139
208	Nanometer resolution in luminescence microscopy of III-V heterostructures. <i>Applied Physics Letters</i> , 1990 , 56, 1564-1566	3.4	139
207	Hall-effect and resistivity study of the heavy-fermion system URu2Si2. <i>Physical Review B</i> , 1987 , 35, 5375-	<u>5</u> .378	135

206	Spontaneously gapped ground state in suspended bilayer graphene. <i>Physical Review Letters</i> , 2012 , 108, 076602	7.4	130
205	Graphene transistors are insensitive to pH changes in solution. <i>Nano Letters</i> , 2011 , 11, 3597-600	11.5	128
204	1/3-shot-noise suppression in diffusive nanowires. <i>Physical Review B</i> , 1999 , 59, 2871-2880	3.3	128
203	Understanding magnetic force microscopy. European Physical Journal B, 1990, 80, 373-383	1.2	125
202	Near-unity Cooper pair splitting efficiency. <i>Physical Review Letters</i> , 2012 , 109, 157002	7.4	121
201	Reversible Formation of Molecular Junctions in 2D Nanoparticle Arrays. <i>Advanced Materials</i> , 2006 , 18, 2444-2447	24	113
200	Even-odd effect in Andreev transport through a carbon nanotube quantum dot. <i>Physical Review Letters</i> , 2007 , 99, 126602	7.4	113
199	Controllable fabrication of SiGe/Si and SiGe/Si/Cr helical nanobelts. <i>Nanotechnology</i> , 2005 , 16, 655-663	3.4	113
198	Single-Electron Tunnelling Observed At Room Temperature by Scanning-Tunnelling Microscopy. <i>Europhysics Letters</i> , 1992 , 20, 249-254	1.6	112
197	Finite-bias Cooper pair splitting. <i>Physical Review Letters</i> , 2011 , 107, 136801	7.4	106
196	Cyclic conductance switching in networks of redox-active molecular junctions. <i>Nano Letters</i> , 2010 , 10, 759-64	11.5	104
195	Giant magnetoresistance of electrodeposited Co/Cu multilayers. <i>Journal of Magnetism and Magnetic Materials</i> , 1995 , 148, 455-465	2.8	102
194	Tuning the Josephson current in carbon nanotubes with the Kondo effect. <i>Physical Review B</i> , 2009 , 79,	3.3	97
193	Nanospintronics with carbon nanotubes. <i>Semiconductor Science and Technology</i> , 2006 , 21, S78-S95	1.8	93
192	Luminescence in scanning tunneling microscopy on IIIIV nanostructures. <i>Journal of Vacuum Science</i> & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 1991 , 9, 409		93
191	Understanding the electrolyte background for biochemical sensing with ion-sensitive field-effect transistors. <i>ACS Nano</i> , 2012 , 6, 9291-8	16.7	85
190	Regulating a benzodifuran single molecule redox switch via electrochemical gating and optimization of molecule/electrode coupling. <i>Journal of the American Chemical Society</i> , 2014 , 136, 8867	-76.4	84
189	Quantum Hall effect in graphene with superconducting electrodes. <i>Nano Letters</i> , 2012 , 12, 1942-5	11.5	82

(2007-2002)

188	Crossover between classical and quantum shot noise in chaotic cavities. <i>Nature</i> , 2002 , 415, 765-7	50.4	82
187	Giant fluctuations and gate control of the g-factor in InAs nanowire quantum dots. <i>Nano Letters</i> , 2008 , 8, 3932-5	11.5	81
186	Observation of Fano resonances in single-wall carbon nanotubes. <i>Physical Review B</i> , 2004 , 70,	3.3	81
185	Snake trajectories in ultraclean graphene p-n junctions. <i>Nature Communications</i> , 2015 , 6, 6470	17.4	79
184	Large spin relaxation anisotropy and valley-Zeeman spin-orbit coupling in WSe2/graphene/h-BN heterostructures. <i>Physical Review B</i> , 2018 , 97,	3.3	78
183	Intrinsic Thermal Vibrations of Suspended Doubly Clamped Single-Wall Carbon Nanotubes. <i>Nano Letters</i> , 2003 , 3, 1577-1580	11.5	78
182	Shot noise by quantum scattering in chaotic cavities. <i>Physical Review Letters</i> , 2001 , 86, 2114-7	7.4	78
181	Selective sodium sensing with gold-coated silicon nanowire field-effect transistors in a differential setup. <i>ACS Nano</i> , 2013 , 7, 5978-83	16.7	75
180	Multiple Andreev reflection and giant excess noise in diffusive superconductor/normal-metal/superconductor junctions. <i>Physical Review B</i> , 2000 , 62, 4079-4085	3.3	75
179	Finite-bias visibility dependence in an electronic Mach-Zehnder interferometer. <i>Physical Review B</i> , 2009 , 79,	3.3	70
178	Molecular states in carbon nanotube double quantum dots. <i>Physical Review B</i> , 2006 , 74,	3.3	70
177	Fabrication of metallic nanowires with a scanning tunneling microscope. <i>Applied Physics Letters</i> , 1995 , 66, 1325-1327	3.4	67
176	Ferromagnetic proximity effect in a ferromagnet-quantum-dot-superconductor device. <i>Physical Review Letters</i> , 2010 , 104, 246804	7.4	66
175	High mobility graphene ion-sensitive field-effect transistors by noncovalent functionalization. <i>Nanoscale</i> , 2013 , 5, 12104-10	7.7	62
174	Ordered nanoparticle arrays interconnected by molecular linkers: electronic and optoelectronic properties. <i>Chemical Society Reviews</i> , 2015 , 44, 999-1014	58.5	61
173	High-detection efficiency and low-timing jitter with amorphous superconducting nanowire single-photon detectors. <i>Applied Physics Letters</i> , 2018 , 112, 061103	3.4	61
172	Nonlocal spectroscopy of Andreev bound states. <i>Physical Review B</i> , 2014 , 89,	3.3	61
171	Feedback controlled electromigration in four-terminal nanojunctions. <i>Applied Physics Letters</i> , 2007 , 91, 053118	3.4	60

170	New cruciform structures: toward coordination induced single molecule switches. <i>Journal of Organic Chemistry</i> , 2007 , 72, 8337-44	4.2	60
169	Charge flow during metal-insulator contact. <i>Physical Review B</i> , 1992 , 45, 3861-3864	3.3	60
168	Scalable tight-binding model for graphene. <i>Physical Review Letters</i> , 2015 , 114, 036601	7.4	58
167	Separation of magnetic and topographic effects in force microscopy. <i>Journal of Applied Physics</i> , 1990 , 67, 7278-7280	2.5	58
166	Spectroscopy of Molecular Junction Networks Obtained by Place Exchange in 2D Nanoparticle Arrays. <i>Journal of Physical Chemistry C</i> , 2007 , 111, 18445-18450	3.8	57
165	High-yield fabrication of nm-size gaps in monolayer CVD graphene. <i>Nanoscale</i> , 2014 , 6, 7249-54	7.7	55
164	Quantum dot coupled to a normal and a superconducting lead. <i>Nanotechnology</i> , 2004 , 15, S479-S482	3.4	55
163	Electrical conductance of atomic contacts in liquid environments. <i>Small</i> , 2005 , 1, 1067-70	11	55
162	Guiding of Electrons in a Few-Mode Ballistic Graphene Channel. <i>Nano Letters</i> , 2015 , 15, 5819-25	11.5	53
161	The Hanbury Brown and Twiss experiment with fermions. <i>Physica E: Low-Dimensional Systems and Nanostructures</i> , 2000 , 6, 314-317	3	52
160	True reference nanosensor realized with silicon nanowires. <i>Langmuir</i> , 2012 , 28, 9899-905	4	51
159	Kondo effect in carbon nanotubes at half filling. <i>Physical Review B</i> , 2004 , 70,	3.3	50
158	Electrical spin injection in multiwall carbon nanotubes with transparent ferromagnetic contacts. <i>Applied Physics Letters</i> , 2005 , 86, 112109	3.4	50
157	New Generation of Moir Superlattices in Doubly Aligned hBN/Graphene/hBN Heterostructures. <i>Nano Letters</i> , 2019 , 19, 2371-2376	11.5	49
156	Sensing with Advanced Computing Technology: Fin Field-Effect Transistors with High-k Gate Stack on Bulk Silicon. <i>ACS Nano</i> , 2015 , 9, 4872-81	16.7	46
155	Signal-to-noise ratio in dual-gated silicon nanoribbon field-effect sensors. <i>Applied Physics Letters</i> , 2011 , 98, 012114	3.4	46
154	Magnetic Field Tuning and Quantum Interference in a Cooper Pair Splitter. <i>Physical Review Letters</i> , 2015 , 115, 227003	7.4	43
153	Nanometer lithography on silicon and hydrogenated amorphous silicon with low energy electrons. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 1995, 13, 805		43

(2007-2014)

152	Investigation of the dominant 1/f noise source in silicon nanowire sensors. <i>Sensors and Actuators B: Chemical</i> , 2014 , 191, 270-275	8.5	41	
151	Contact resistance dependence of crossed Andreev reflection. <i>Europhysics Letters</i> , 2009 , 87, 27011	1.6	41	
150	Electron heating effects in diffusive metal wires. Applied Physics Letters, 1997, 71, 773-775	3.4	41	
149	Sensitivity of single multiwalled carbon nanotubes to the environment. <i>New Journal of Physics</i> , 2003 , 5, 138-138	2.9	41	
148	Large-scale fabrication of BN tunnel barriers for graphene spintronics. <i>Journal of Applied Physics</i> , 2014 , 116, 074306	2.5	40	
147	Positive cross correlations in a normal-conducting fermionic beam splitter. <i>Physical Review Letters</i> , 2006 , 96, 046804	7.4	40	
146	Orientation and Positioning of DNA Molecules with an Electric Field Technique. <i>Single Molecules</i> , 2002 , 3, 189-193		40	
145	Quantum-Confined Stark Effect in a MoS Monolayer van der Waals Heterostructure. <i>Nano Letters</i> , 2018 , 18, 1070-1074	11.5	38	
144	Spin transport in fully hexagonal boron nitride encapsulated graphene. <i>Physical Review B</i> , 2016 , 93,	3.3	37	
143	Permalloy-based carbon nanotube spin-valve. <i>Applied Physics Letters</i> , 2010 , 97, 153116	3.4	37	
142	Single-electron tunneling up to room temperature. <i>Physica Scripta</i> , 1992 , T45, 289-291	2.6	37	
141	Ambipolar field-effect transistor on as-grown single-wall carbon nanotubes. <i>Nanotechnology</i> , 2003 , 14, 327-331	3.4	36	
140	Gate tuneable beamsplitter in ballistic graphene. Applied Physics Letters, 2015, 107, 251901	3.4	35	
139	Local electrical tuning of the nonlocal signals in a Cooper pair splitter. <i>Physical Review B</i> , 2014 , 90,	3.3	35	
138	Interlinking Au nanoparticles in 2D arrays via conjugated dithiolated molecules. <i>New Journal of Physics</i> , 2008 , 10, 065019	2.9	34	
137	Controlled formation of metallic nanowires via Au nanoparticle ac trapping. <i>Nanotechnology</i> , 2007 , 18, 235202	3.4	34	
136	Resonant and Inelastic Andreev Tunneling Observed on a Carbon Nanotube Quantum Dot. <i>Physical Review Letters</i> , 2015 , 115, 216801	7.4	32	
135	Tetrathiafulvalene-based molecular nanowires. Chemical Communications, 2007, 4854-6	5.8	32	

134	Shot-noise and conductance measurements of transparent superconductor/two-dimensional electron gas junctions. <i>Physical Review B</i> , 2005 , 72,	3.3	31
133	Physical Properties of Multi-wall Nanotubes 2001 , 329-391		31
132	Size Dependent Thermopower in Mesoscopic AuFe Wires. <i>Physical Review Letters</i> , 1998 , 81, 2982-2985	7.4	31
131	Fabrication and characterization of freestanding Si/Cr micro- and nanospirals. <i>Microelectronic Engineering</i> , 2006 , 83, 1237-1240	2.5	30
130	Resonant tunnelling through a C(60) molecular junction in a liquid environment. <i>Nanotechnology</i> , 2005 , 16, 2143-8	3.4	30
129	Resistless high resolution optical lithography on silicon. <i>Applied Physics Letters</i> , 1995 , 67, 2989-2991	3.4	29
128	Clean carbon nanotubes coupled to superconducting impedance-matching circuits. <i>Nature Communications</i> , 2015 , 6, 7165	17.4	28
127	Andreev bound states probed in three-terminal quantum dots. <i>Physical Review B</i> , 2017 , 96,	3.3	28
126	Controlling spin in an electronic interferometer with spin-active interfaces. <i>Europhysics Letters</i> , 2006 , 74, 320-326	1.6	28
125	Optically probing the detection mechanism in a molybdenum silicide superconducting nanowire single-photon detector. <i>Applied Physics Letters</i> , 2017 , 110, 083106	3.4	25
124	Fabry-Plot Resonances in a Graphene/hBN Moirl Superlattice. Nano Letters, 2017, 17, 328-333	11.5	25
123	Entanglement witnessing and quantum cryptography with nonideal ferromagnetic detectors. <i>Physical Review B</i> , 2014 , 89,	3.3	25
122	Force-conductance correlation in individual molecular junctions. <i>Nanotechnology</i> , 2012 , 23, 365201	3.4	25
121	Conductance values of alkanedithiol molecular junctions. <i>New Journal of Physics</i> , 2008 , 10, 065018	2.9	25
120	Fabrication and superconducting properties of nanostructured SFS contacts. <i>Journal of Magnetism and Magnetic Materials</i> , 2002 , 240, 598-600	2.8	25
119	Optimized fabrication and characterization of carbon nanotube spin valves. <i>Journal of Applied Physics</i> , 2014 , 115, 174309	2.5	24
118	Spin symmetry of the bilayer graphene ground state. <i>Physical Review B</i> , 2013 , 87,	3.3	24
117	Competing surface reactions limiting the performance of ion-sensitive field-effect transistors. Sensors and Actuators B: Chemical, 2015, 220, 500-507	8.5	22

(2008-2014)

116	Rendering graphene supports hydrophilic with non-covalent aromatic functionalization for transmission electron microscopy. <i>Applied Physics Letters</i> , 2014 , 104, 134103	3.4	22
115	Magnetic field and contact resistance dependence of non-local charge imbalance. <i>Nanotechnology</i> , 2010 , 21, 274002	3.4	22
114	Charge and spin transport in carbon nanotubes. Semiconductor Science and Technology, 2006, 21, S1-S9	1.8	22
113	Oligoaryl Cruciform Structures as Model Compounds for Coordination-Induced Single-Molecule Switches. <i>European Journal of Organic Chemistry</i> , 2010 , 2010, 833-845	3.2	21
112	Shot noise of series quantum point contacts intercalating chaotic cavities. <i>Physical Review B</i> , 2002 , 66,	3.3	21
111	Microwave Photodetection in an Ultraclean Suspended Bilayer Graphene p-n Junction. <i>Nano Letters</i> , 2016 , 16, 6988-6993	11.5	21
110	Fabrication of ballistic suspended graphene with local-gating. <i>Carbon</i> , 2014 , 79, 486-492	10.4	20
109	Nonorganic evaporation mask for superconducting nanodevices. <i>Microelectronic Engineering</i> , 1999 , 46, 149-152	2.5	20
108	Single-electron tunneling in double-barrier junctions by scanning tunneling microscopy. <i>Applied Surface Science</i> , 1993 , 67, 222-227	6.7	20
107	One-Dimensional Edge Transport in Few-Layer WTe. <i>Nano Letters</i> , 2020 , 20, 4228-4233	11.5	19
106	Spin transport in two-layer-CVD-hBN/graphene/hBN heterostructures. <i>Physical Review B</i> , 2018 , 97,	3.3	19
105	Random telegraph signals in molecular junctions. <i>Journal of Physics Condensed Matter</i> , 2014 , 26, 474202	21.8	19
104	Restoring the Electrical Properties of CVD Graphene via Physisorption of Molecular Adsorbates. <i>ACS Applied Materials & Distributed & Dist</i>	9.5	19
103	Decapitation of tungsten field emitter tips during sputter sharpening. Surface Science, 1995 , 339, L925-	L <u>₽</u> .80	19
102	Gigahertz Quantized Charge Pumping in Bottom-Gate-Defined InAs Nanowire Quantum Dots. <i>Nano Letters</i> , 2015 , 15, 4585-90	11.5	18
101	Cooper-pair splitting in two parallel InAs nanowires. <i>New Journal of Physics</i> , 2018 , 20, 063021	2.9	18
100	Dual Gated Silicon Nanowire Field Effect Transistors. <i>Procedia Chemistry</i> , 2009 , 1, 678-681		18
99	Scaling of 1flnoise in tunable break junctions. <i>Physical Review B</i> , 2008 , 78,	3.3	18

98	Scanning tunneling microscopy as a tool to study surface roughness of sputtered thin films. <i>Journal of Applied Physics</i> , 1989 , 66, 4258-4261	2.5	18
97	Charge Noise in Organic Electrochemical Transistors. <i>Physical Review Applied</i> , 2017 , 7,	4.3	17
96	In Situ Strain Tuning in hBN-Encapsulated Graphene Electronic Devices. <i>Nano Letters</i> , 2019 , 19, 4097-41	0:2 1.5	17
95	Spectroscopy of the superconducting proximity effect in nanowires using integrated quantum dots. <i>Communications Physics</i> , 2019 , 2,	5.4	17
94	GHz nanomechanical resonator in an ultraclean suspended graphene p-n junction. <i>Nanoscale</i> , 2019 , 11, 4355-4361	7.7	16
93	Ultraclean single, double, and triple carbon nanotube quantum dots with recessed Re bottom gates. <i>Nano Letters</i> , 2013 , 13, 4522-6	11.5	16
92	Silicon-based ion-sensitive field-effect transistor shows negligible dependence on salt concentration at constant pH. <i>ChemPhysChem</i> , 2012 , 13, 1157-60	3.2	15
91	Electrolyte gate dependent high-frequency measurement of graphene field-effect transistor for sensing applications. <i>Applied Physics Letters</i> , 2014 , 104, 013102	3.4	14
90	Giant Valley-Isospin Conductance Oscillations in Ballistic Graphene. <i>Nano Letters</i> , 2017 , 17, 5389-5393	11.5	14
89	Conductance properties of nanotubes coupled to superconducting leads: signatures of Andreev states dynamics. <i>Solid State Communications</i> , 2004 , 131, 625-630	1.6	14
88	The amplitude of non-equilibrium quantum interference in metallic mesoscopic systems. <i>Europhysics Letters</i> , 2002 , 59, 437-443	1.6	14
87	Magnetic-Field-Independent Subgap States in Hybrid Rashba Nanowires. <i>Physical Review Letters</i> , 2020 , 125, 017701	7.4	13
86	Coexistence of classical snake states and Aharonov-Bohm oscillations along graphene pli junctions. <i>Physical Review B</i> , 2018 , 98,	3.3	13
85	Sensor system including silicon nanowire ion sensitive FET arrays and CMOS readout. <i>Sensors and Actuators B: Chemical</i> , 2014 , 204, 568-577	8.5	13
84	Superconductivity-enhanced conductance fluctuations in few-layer graphene. <i>Nanotechnology</i> , 2010 , 21, 274005	3.4	13
83	Large oscillating nonlocal voltage in multiterminal single-wall carbon nanotube devices. <i>Physical Review B</i> , 2008 , 77,	3.3	13
82	Carbon nanotube quantum dots on hexagonal boron nitride. <i>Applied Physics Letters</i> , 2014 , 105, 023111	3.4	12
81	Signatures of van Hove Singularities Probed by the Supercurrent in a Graphene-hBN Superlattice. Physical Review Letters, 2018, 121, 137701	7.4	12

(2016-2015)

80	Shot Noise of a Quantum Dot Measured with Gigahertz Impedance Matching. <i>Physical Review Applied</i> , 2015 , 4,	4.3	11
79	Preamplifier for electric-current noise measurements at low temperatures. <i>Review of Scientific Instruments</i> , 1996 , 67, 2977-2980	1.7	11
78	Boosting proximity spinBrbit coupling in graphene/WSe2 heterostructures via hydrostatic pressure. <i>Npj 2D Materials and Applications</i> , 2021 , 5,	8.8	11
77	Formation Mechanism of MetalMoleculeMetal Junctions: Molecule-Assisted Migration on Metal Defects. <i>Journal of Physical Chemistry C</i> , 2015 , 119, 19438-19451	3.8	10
76	Highly symmetric and tunable tunnel couplings in InAs/InP nanowire heterostructure quantum dots. <i>Nanotechnology</i> , 2019 , 31, 135003	3.4	10
75	Gate-controlled conductance enhancement from quantum Hall channels along graphene p-n junctions. <i>Nanoscale</i> , 2016 , 8, 19910-19916	7.7	10
74	Subgap resonant quasiparticle transport in normal-superconductor quantum dot devices. <i>Applied Physics Letters</i> , 2016 , 108, 172604	3.4	10
73	A Verilog-A model for silicon nanowire biosensors: From theory to verification. <i>Sensors and Actuators B: Chemical</i> , 2013 , 179, 293-300	8.5	10
72	Defining and controlling double quantum dots in single-walled carbon nanotubes. <i>Semiconductor Science and Technology</i> , 2006 , 21, S64-S68	1.8	10
71	Comment on Magnetoresistance and differential conductance in mutliwalled carbon nanotubes Physical Review B, 2001 , 64,	3.3	10
70	Polarization charge relaxation and the Coulomb staircase in ultrasmall double-barrier tunnel junctions. <i>Physica B: Condensed Matter</i> , 1993 , 189, 218-224	2.8	10
69	Signatures of single quantum dots in graphene nanoribbons within the quantum Hall regime. <i>Nanoscale</i> , 2016 , 8, 11480-6	7.7	10
68	Measuring a Quantum Dot with an Impedance-Matching On-Chip Superconducting LC Resonator at Gigahertz Frequencies. <i>Physical Review Applied</i> , 2017 , 8,	4.3	9
67	Homogeneity of bilayer graphene. Solid State Communications, 2012, 152, 2053-2057	1.6	9
66	g-factor anisotropy in nanowire-based InAs quantum dots 2013 ,		9
65	Contacting single template synthesized nanowires for electric measurements. <i>Microelectronic Engineering</i> , 1998 , 41-42, 571-574	2.5	9
64	NMR study of the structural properties of electrodeposited Co/Cu multilayers. <i>Journal of Magnetism and Magnetic Materials</i> , 1996 , 156, 29-30	2.8	9
63	Label-Free FimH Protein Interaction Analysis Using Silicon Nanoribbon BioFETs. <i>ACS Sensors</i> , 2016 , 1, 781-788	9.2	9

62	Fork stamping of pristine carbon nanotubes onto ferromagnetic contacts for spin-valve devices. <i>Physica Status Solidi (B): Basic Research</i> , 2015 , 252, 2496-2502	1.3	8
61	Kondo effect and spin-active scattering in ferromagnet-superconductor junctions. <i>Physical Review B</i> , 2012 , 85,	3.3	8
60	Gate-tunable split Kondo effect in a carbon nanotube quantum dot. <i>Nanotechnology</i> , 2011 , 22, 265204	3.4	8
59	Vortex motion noise in micrometer-sized thin films of the amorphous Nb0.7Ge0.3 weak-pinning superconductor. <i>Physical Review B</i> , 2002 , 66,	3.3	8
58	Fabrication of large arrays of metallic nanowires on V-grooved substrates. <i>Applied Physics Letters</i> , 1995 , 67, 1489-1491	3.4	8
57	A double quantum dot spin valve. <i>Communications Physics</i> , 2020 , 3,	5.4	8
56	Implementing Silicon Nanoribbon Field-Effect Transistors as Arrays for Multiple Ion Detection. <i>Biosensors</i> , 2016 , 6, 21	5.9	8
55	Comparative study of single and multi domain CVD graphene using large-area Raman mapping and electrical transport characterization. <i>Physica Status Solidi - Rapid Research Letters</i> , 2016 , 10, 807-811	2.5	8
54	Mobility Enhancement in Graphene by in situ Reduction of Random Strain Fluctuations. <i>Physical Review Letters</i> , 2020 , 124, 157701	7.4	8
53	Intrinsically-limited timing jitter in molybdenum silicide superconducting nanowire single-photon detectors. <i>Journal of Applied Physics</i> , 2019 , 126, 164501	2.5	7
52	Hydrogen plasma microlithography of graphene supported on a Si/SiO2 substrate. <i>Applied Physics Letters</i> , 2013 , 102, 071602	3.4	7
51	Electronic and Mechanical Properties of Carbon Nanotubes 2002 , 297-320		7
50	Large spatial extension of the zero-energy Yu-Shiba-Rusinov state in a magnetic field. <i>Nature Communications</i> , 2020 , 11, 1834	17.4	7
49	Wet etch methods for InAs nanowire patterning and self-aligned electrical contacts. <i>Nanotechnology</i> , 2016 , 27, 195303	3.4	6
48	Novel cruciform structures as model compounds for coordination induced single molecule switches. <i>Chimia</i> , 2010 , 64, 140-4	1.3	6
47	Magnetoresistance engineering and singlet/triplet switching in InAs nanowire quantum dots with ferromagnetic sidegates. <i>Physical Review B</i> , 2016 , 94,	3.3	6
46	Operation of parallel SNSPDs at high detection rates. <i>Superconductor Science and Technology</i> , 2021 , 34, 024002	3.1	6
45	New method of transport measurements on van der Waals heterostructures under pressure. Journal of Applied Physics, 2021, 130, 064303	2.5	6

(2020-2018)

44	Blocking-state influence on shot noise and conductance in quantum dots. <i>Physical Review B</i> , 2018 , 97,	3.3	5
43	Full characterization of a carbon nanotube parallel double quantum dot. <i>Physica Status Solidi (B):</i> Basic Research, 2016 , 253, 2428-2432	1.3	5
42	Superconductivity in type-II Weyl-semimetal WTe2 induced by a normal metal contact. <i>Journal of Applied Physics</i> , 2021 , 129, 113903	2.5	5
41	Role of hexagonal boron nitride in protecting ferromagnetic nanostructures from oxidation. <i>2D Materials</i> , 2016 , 3, 011008	5.9	4
40	Point contacts in encapsulated graphene. Applied Physics Letters, 2015, 107, 183108	3.4	4
39	UHV compatible nanostructuring technique for mesoscopic hybrid devices: application to superconductor/ferromagnet Josephson contacts. <i>Physica E: Low-Dimensional Systems and Nanostructures</i> , 2002 , 14, 341-345	3	4
38	Nanolithography on hydrogen-terminated silicon by scanning-probe microscopy. <i>Microelectronic Engineering</i> , 1996 , 32, 203-217	2.5	4
37	Tailoring the Band Structure of Twisted Double Bilayer Graphene with Pressure. <i>Nano Letters</i> , 2021 , 21, 8777-8784	11.5	4
36	Circuit Quantum Electrodynamics with Carbon-Nanotube-Based Superconducting Quantum Circuits. <i>Physical Review Applied</i> , 2021 , 15,	4.3	4
35	Additional peak appearing in the one-photon luminescence of single gold nanorods. <i>Optics Letters</i> , 2016 , 41, 1325-8	3	4
34	Entanglement Detection with Non-Ideal Ferromagnetic Detectors. <i>Acta Physica Polonica A</i> , 2015 , 127, 493-495	0.6	3
33	Silicon nanowire ion-sensitive field-effect transistor array integrated with a CMOS-based readout chip 2013 ,		3
32	Interference and interactions in multiwall nanotubes. <i>Physica B: Condensed Matter</i> , 2000 , 280, 384-385	2.8	3
31	Electrical properties of single carbon nanotubes 1998,		3
30	Superconducting Contacts to a Monolayer Semiconductor. <i>Nano Letters</i> , 2021 , 21, 5614-5619	11.5	3
29	Nonequilibrium properties of graphene probed by superconducting tunnel spectroscopy. <i>Physical Review B</i> , 2019 , 99,	3.3	3
28	Wideband and On-Chip Excitation for Dynamical Spin Injection into Graphene. <i>Physical Review Applied</i> , 2018 , 10,	4.3	3
27	Controllable p-n junctions in three-dimensional Dirac semimetal CdAs nanowires. <i>Nanotechnology</i> , 2020 , 31, 205001	3.4	2

26	Physics. Two indistinguishable electrons interfere in an electronic device. <i>Science</i> , 2013 , 339, 1041-2	33.3	2
25	Microscope images individual charges. <i>Physics World</i> , 1997 , 10, 25-27	0.5	2
24	Mapping electron delocalization by charge transport spectroscopy in an artificial molecule. <i>Annalen Der Physik</i> , 2007 , 16, 672-677	2.6	2
23	Directional scrolling of hetero-films on Si(110) and Si(111) surfaces. <i>Microelectronic Engineering</i> , 2006 , 83, 1233-1236	2.5	2
22	Formation of Holes in Alkanethiol Monolayers on Gold. [Erratum to document cited in CA121:66567]. <i>The Journal of Physical Chemistry</i> , 1995 , 99, 469-474		2
21	Characterization of a titanium nanoscopic wire by STM and SFM. <i>Nanotechnology</i> , 1991 , 2, 96-102	3.4	2
20	Nanowires Grown Electrochemically in Porous Templates. <i>Materials Research Society Symposia Proceedings</i> , 1996 , 451, 359		2
19	Compact SQUID Realized in a Double-Layer Graphene Heterostructure. <i>Nano Letters</i> , 2020 , 20, 7129-7	13 £ 1.5	2
18	Out-of-plane corrugations in graphene based van der Waals heterostructures. <i>Physical Review B</i> , 2020 , 102,	3.3	1
17	Characterization of HMDS treated CVD graphene 2016 ,		1
16	Contactless Microwave Characterization of Encapsulated Graphene pl Junctions. <i>Physical Review Applied</i> , 2017 , 7,	4.3	1
15	Potassium sensing with membrane-coated silicon nanowire field-effect transistors 2013,		1
14	Molecular Electronics. <i>Imaging & Microscopy</i> , 2006 , 8, 37-37		1
13	Shot Noise in Diffusive Superconductor/Normal Metal Heterostructures 2003 , 119-133		1
12	Spectroscopy of the local density of states in nanowires using integrated quantum dots. <i>Physical Review B</i> , 2021 , 104,	3.3	1
11	2D materials shrink superconducting qubits <i>Nature Materials</i> , 2022 , 21, 381-382	27	O
10	Conductance fluctuations in graphene devices with superconducting contacts in different charge density regimes. <i>Physica Status Solidi (B): Basic Research</i> , 2011 , 248, 2649-2652	1.3	
9	Eine Trenneinrichtung f目Quantenpaare. <i>Physik in Unserer Zeit</i> , 2010 , 41, 58-59	0.1	

LIST OF PUBLICATIONS

8	Andreev reflection and excess noise in diffusive SNS junctions. <i>Physica C: Superconductivity and Its Applications</i> , 2001 , 352, 61-66	1.3
7	Mesoscopic effects in the thermopower of dilute AuFe alloys. <i>Advances in Solid State Physics</i> , 1999 , 31	1-321
6	Scanning tunnelling microscope-induced oxidation of hydrogen passivated silicon surfaces. <i>Thin Solid Films</i> , 1996 , 281-282, 637-639	2.2
5	Thermopower of Mesoscopic Spin Glasses 2001 , 33-42	
4	Shot-Noise Suppression in the Single-Electron Tunneling Regime 1996 , 317-326	
3	Cooper-Paare tunneln durch einen Quantenpunkt. <i>Physik in Unserer Zeit</i> , 2016 , 47, 62-63	0.1
2	A success story. <i>Nature Nanotechnology</i> , 2016 , 11, 908	28.7
1	Radio-frequency characterization of a supercurrent transistor made of a carbon nanotube. Materials for Quantum Technology, 2021 , 1, 035003	