List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5101553/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                                           | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Contractile activity-induced oxidative stress: cellular origin and adaptive responses. American<br>Journal of Physiology - Cell Physiology, 2001, 280, C621-C627.                                                                                                                 | 2.1 | 267       |
| 2  | Effect of Vitamin C Supplements on Antioxidant Defence and Stress Proteins in Human Lymphocytes<br>and Skeletal Muscle. Journal of Physiology, 2003, 549, 645-652.                                                                                                                | 1.3 | 231       |
| 3  | Studies of Mitochondrial and Nonmitochondrial Sources Implicate Nicotinamide Adenine<br>Dinucleotide Phosphate Oxidase(s) in the Increased Skeletal Muscle Superoxide Generation That<br>Occurs During Contractile Activity. Antioxidants and Redox Signaling, 2013, 18, 603-621. | 2.5 | 207       |
| 4  | Free radical generation by skeletal muscle of adult and old mice: effect of contractile activity. Aging Cell, 2006, 5, 109-117.                                                                                                                                                   | 3.0 | 180       |
| 5  | Adaptive responses of mouse skeletal muscle to contractile activity: The effect of age. Mechanisms of<br>Ageing and Development, 2006, 127, 830-839.                                                                                                                              | 2.2 | 150       |
| 6  | Exercise and skeletal muscle ageing: cellular and molecular mechanisms. Ageing Research Reviews, 2002, 1, 79-93.                                                                                                                                                                  | 5.0 | 140       |
| 7  | Redefining the major contributors to superoxide production in contracting skeletal muscle. The role of NAD(P)H oxidases. Free Radical Research, 2014, 48, 12-29.                                                                                                                  | 1.5 | 137       |
| 8  | Age-related changes in skeletal muscle: changes to life-style as a therapy. Biogerontology, 2018, 19,<br>519-536.                                                                                                                                                                 | 2.0 | 137       |
| 9  | ls oxidative stress a physiological cost of reproduction? An experimental test in house mice.<br>Proceedings of the Royal Society B: Biological Sciences, 2011, 278, 1098-1106.                                                                                                   | 1.2 | 108       |
| 10 | Preconditioning of skeletal muscle against contraction-induced damage: the role of adaptations to oxidants in mice. Journal of Physiology, 2004, 561, 233-244.                                                                                                                    | 1.3 | 107       |
| 11 | Intracellular generation of reactive oxygen species by contracting skeletal muscle cells. Free Radical<br>Biology and Medicine, 2005, 39, 651-657.                                                                                                                                | 1.3 | 107       |
| 12 | Mitochondrial ROS regulate oxidative damage and mitophagy but not age-related muscle fiber atrophy.<br>Scientific Reports, 2016, 6, 33944.                                                                                                                                        | 1.6 | 97        |
| 13 | Damage to developing mouse skeletal muscle myotubes in culture: protective effect of heat shock<br>proteins. Journal of Physiology, 2003, 548, 837-846.                                                                                                                           | 1.3 | 97        |
| 14 | Pathogenesis of FOLFOX induced sinusoidal obstruction syndrome in a murine chemotherapy model.<br>Journal of Hepatology, 2013, 59, 318-326.                                                                                                                                       | 1.8 | 95        |
| 15 | Repeated bouts of aerobic exercise lead to reductions in skeletal muscle free radical generation and nuclear factor l <sup>®</sup> B activation. Journal of Physiology, 2008, 586, 3979-3990.                                                                                     | 1.3 | 88        |
| 16 | Attenuated HSP70 response in skeletal muscle of aged rats following contractile activity. Muscle and Nerve, 2002, 25, 902-905.                                                                                                                                                    | 1.0 | 78        |
| 17 | Neuronâ€specific expression of CuZnSOD prevents the loss of muscle mass and function that occurs in homozygous CuZnSODâ€knockout mice. FASEB Journal, 2014, 28, 1666-1681.                                                                                                        | 0.2 | 75        |
| 18 | Skeletal Muscle Damage with Exercise and Aging. Sports Medicine, 2005, 35, 413-427.                                                                                                                                                                                               | 3.1 | 68        |

| #  | Article                                                                                                                                                                                                                                                     | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Neuron specific reduction in CuZnSOD is not sufficient to initiate a full sarcopenia phenotype. Redox<br>Biology, 2015, 5, 140-148.                                                                                                                         | 3.9 | 61        |
| 20 | Cellular mechanisms underlying oxidative stress in human exercise. Free Radical Biology and Medicine, 2016, 98, 13-17.                                                                                                                                      | 1.3 | 60        |
| 21 | Vitamin E and the Oxidative Stress of Exercise. Annals of the New York Academy of Sciences, 2004, 1031, 158-168.                                                                                                                                            | 1.8 | 58        |
| 22 | Role of superoxide–nitric oxide interactions in the accelerated ageâ€related loss of muscle mass in<br>mice lacking Cu,Zn superoxide dismutase. Aging Cell, 2011, 10, 749-760.                                                                              | 3.0 | 57        |
| 23 | Tissueâ€dependent changes in oxidative damage with male reproductive effort in house mice. Functional Ecology, 2012, 26, 423-433.                                                                                                                           | 1.7 | 57        |
| 24 | Accelerated sarcopenia in Cu/Zn superoxide dismutase knockout mice. Free Radical Biology and Medicine, 2019, 132, 19-23.                                                                                                                                    | 1.3 | 51        |
| 25 | Glutathione-peroxidase-1 null muscle progenitor cells are globally defective. Free Radical Biology and<br>Medicine, 2006, 41, 1174-1184.                                                                                                                    | 1.3 | 50        |
| 26 | Role of reactive oxygen species in the defective regeneration seen in aging muscle. Free Radical<br>Biology and Medicine, 2013, 65, 317-323.                                                                                                                | 1.3 | 50        |
| 27 | The ageâ€related failure of adaptive responses to contractile activity in skeletal muscle is mimicked in young mice by deletion of Cu,Zn superoxide dismutase. Aging Cell, 2010, 9, 979-990.                                                                | 3.0 | 48        |
| 28 | Aging increases the oxidation of dichlorohydrofluorescein in single isolated skeletal muscle fibers<br>at rest, but not during contractions. American Journal of Physiology - Regulatory Integrative and<br>Comparative Physiology, 2013, 305, R351-R358.   | 0.9 | 48        |
| 29 | Comparison of Whole Body SOD1 Knockout with Muscle-Specific SOD1 Knockout Mice Reveals a Role<br>for Nerve Redox Signaling in Regulation of Degenerative Pathways in Skeletal Muscle. Antioxidants<br>and Redox Signaling, 2018, 28, 275-295.               | 2.5 | 41        |
| 30 | Denervated muscle fibers induce mitochondrial peroxide generation in neighboring innervated fibers:<br>Role in muscle aging. Free Radical Biology and Medicine, 2017, 112, 84-92.                                                                           | 1.3 | 40        |
| 31 | Genetic modification of the manganese superoxide dismutase/glutathione peroxidase 1 pathway<br>influences intracellular ROS generation in quiescent, but not contracting, skeletal muscle cells. Free<br>Radical Biology and Medicine, 2006, 41, 1719-1725. | 1.3 | 37        |
| 32 | Formation of 3-nitrotyrosines in carbonic anhydrase III is a sensitive marker of oxidative stress in skeletal muscle. Proteomics - Clinical Applications, 2007, 1, 362-372.                                                                                 | 0.8 | 36        |
| 33 | Role of nerve–muscle interactions and reactive oxygen species in regulation of muscle proteostasis with ageing. Journal of Physiology, 2017, 595, 6409-6415.                                                                                                | 1.3 | 36        |
| 34 | Skeletal muscles of aged male mice fail to adapt following contractile activity. Biochemical Society Transactions, 2003, 31, 455-456.                                                                                                                       | 1.6 | 31        |
| 35 | Ageing in relation to skeletal muscle dysfunction: redox homoeostasis to regulation of gene expression. Mammalian Genome, 2016, 27, 341-357.                                                                                                                | 1.0 | 29        |
| 36 | Neuronâ€specific deletion of CuZnSOD leads to an advanced sarcopenic phenotype in older mice. Aging<br>Cell, 2020, 19, e13225.                                                                                                                              | 3.0 | 29        |

| #  | Article                                                                                                                                                                                                | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Redox responses in skeletal muscle following denervation. Redox Biology, 2019, 26, 101294.                                                                                                             | 3.9 | 26        |
| 38 | HSF expression in skeletal muscle during myogenesis: Implications for failed regeneration in old mice.<br>Experimental Gerontology, 2006, 41, 497-500.                                                 | 1.2 | 24        |
| 39 | Ageing-induced changes in the redox status of peripheral motor nerves imply an effect on redox signalling rather than oxidative damage. Free Radical Biology and Medicine, 2016, 94, 27-35.            | 1.3 | 23        |
| 40 | The effect of lengthening contractions on neuromuscular junction structure in adult and old mice.<br>Age, 2016, 38, 259-272.                                                                           | 3.0 | 21        |
| 41 | Low steady-state oxidative stress inhibits adipogenesis by altering mitochondrial dynamics and decreasing cellular respiration. Redox Biology, 2020, 32, 101507.                                       | 3.9 | 17        |
| 42 | Redox and epigenetic regulation of the APE1 gene in the hippocampus of piglets: The effect of early life exposures. DNA Repair, 2014, 18, 52-62.                                                       | 1.3 | 15        |
| 43 | Manipulation of environmental oxygen modifies reactive oxygen and nitrogen species generation during myogenesis. Redox Biology, 2016, 8, 243-251.                                                      | 3.9 | 13        |
| 44 | HyPer2 imaging reveals temporal and heterogeneous hydrogen peroxide changes in denervated and aged skeletal muscle fibers in vivo. Scientific Reports, 2019, 9, 14461.                                 | 1.6 | 10        |
| 45 | Low protein intake during reproduction compromises the recovery of lactationâ€induced bone loss in female mouse dams without affecting skeletal muscles. FASEB Journal, 2020, 34, 11844-11859.         | 0.2 | 7         |
| 46 | Skeletal muscle transcriptomics identifies common pathways in nerve crush injury and ageing.<br>Skeletal Muscle, 2022, 12, 3.                                                                          | 1.9 | 5         |
| 47 | Small-RNA Sequencing Reveals Altered Skeletal Muscle microRNAs and snoRNAs Signatures in<br>Weanling Male Offspring from Mouse Dams Fed a Low Protein Diet during Lactation. Cells, 2021, 10,<br>1166. | 1.8 | 4         |
| 48 | Oxidative stress in skeletal muscle: Unraveling the potential beneficial and deleterious roles of reactive oxygen species. , 2020, , 713-733.                                                          |     | 3         |
| 49 | Editorial: Dysregulated Protein Homeostasis in the Aging Organism. Frontiers in Molecular<br>Biosciences, 2021, 8, 788118.                                                                             | 1.6 | 1         |
| 50 | HSP Production in Skeletal Muscle of Young and Old Rats following Exercise. Clinical Science, 2000, 99, 22P-22P.                                                                                       | 0.0 | 0         |
| 51 | Accelerated age-related loss of muscle mass in homozygotic SOD1 knockout mice is not associated with neuronal oxidative damage. Free Radical Biology and Medicine, 2013, 65, S48.                      | 1.3 | Ο         |
| 52 | Ageing and the Musculoskeletal System * 175. Musculoskeletal Ageing: From Epidemiology to Clinical<br>Trials. Rheumatology, 2013, 52, i18-i25.                                                         | 0.9 | 0         |
| 53 | Skeletal Muscle Aging. , 2003, , 73-99.                                                                                                                                                                |     | 0         |
| 54 | In vivo studies of motor nerve reâ€growth following skeletal muscle damage by lengthening contractions. FASEB Journal, 2012, 26, 1141.4.                                                               | 0.2 | 0         |

| #  | Article                                                                                                                                                                         | IF  | CITATION |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----------|
| 55 | Adaptive cytoprotective responses of motor neuron cells to reactive oxygen species generation by muscle cells, in coâ€culture. FASEB Journal, 2013, 27, 919.2.                  | 0.2 | 0        |
| 56 | NFâ€₽̂B activation in hindlimb muscles from adult and old mice at rest and following contractile activity (LB814). FASEB Journal, 2014, 28, LB814.                              | 0.2 | 0        |
| 57 | Neuronâ€specific expression of CuZnSOD prevents the loss of muscle mass and function that occurs in homozygous CuZnSOD knockout mice (1153.3). FASEB Journal, 2014, 28, 1153.3. | 0.2 | 0        |
| 58 | Do senescent cells drive the ageing phenotype of skeletal muscle in vivo?. FASEB Journal, 2018, 32, 907.3.                                                                      | 0.2 | 0        |
| 59 | CHARACTERISATION OF NFâ€KB ACTIVATION IN REGENERATING FIBRES OF OLD MICE. FASEB Journal, 2018, 32, 907.5.                                                                       | 0.2 | 0        |
| 60 | Aquaporin transport of hydrogen peroxide in skeletal muscle. FASEB Journal, 2019, 33, lb644.                                                                                    | 0.2 | 0        |
| 61 | Genomic Profiling and Physiological Approaches to Understand Aquaporins and their Role in ROS<br>Signalling within Skeletal Muscle. FASEB Journal, 2020, 34, 1-1.               | 0.2 | 0        |