Joaquin R Dominguez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5101356/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Synthesis and characterisation of acid/basic modified adsorbents. Application for chlorophenols removal. Environmental Research, 2022, 207, 112187.	7.5	8
2	New trends on green energy and environmental technologies, with special focus on biomass valorization, water and waste recycling: editorial of the special issue. Journal of Environmental Management, 2022, 316, 115209.	7.8	4
3	Water and waste remediation processes: an update. Environmental Science and Pollution Research, 2021, 28, 18725-18726.	5.3	0
4	Treatment technologies for emerging contaminants in water. Journal of Environmental Management, 2021, 286, 112256.	7.8	4
5	Sonochemical degradation of neonicotinoid pesticides in natural surface waters. Influence of operational and environmental conditions. Environmental Research, 2021, 197, 111021.	7.5	8
6	New research on water, waste and energy management, with special focus on antibiotics and priority pollutants. Environmental Research, 2021, 201, 111582.	7.5	3
7	New research on reduction and/or elimination of hazardous substances in the design, manufacture and application of chemical products. Environmental Research, 2021, 201, 111601.	7.5	3
8	Electrochemical and sonochemical advanced oxidation processes applied to tartrazine removal. Influence of operational conditions and aqueous matrix. Environmental Research, 2021, 202, 111517.	7.5	24
9	BDD electrochemical oxidation of neonicotinoid pesticides in natural surface waters. Operational, kinetic and energetic aspects. Journal of Environmental Management, 2021, 298, 113538.	7.8	10
10	Concentration Polarization Quantification and Minimization in Cork Process Wastewater Ultrafiltration by an Ozone Pretreatment. Processes, 2021, 9, 2182.	2.8	1
11	Selecting and improving activated homogeneous catalytic processes for pollutant removal. Kinetics, mineralization and optimization. Journal of Environmental Management, 2020, 256, 109972.	7.8	6
12	Neonicotinoids removal by associated binary, tertiary and quaternary advanced oxidation processes: Synergistic effects, kinetics and mineralization. Journal of Environmental Management, 2020, 261, 110156.	7.8	27
13	Winery wastewater treatment by sulphate radical based-advanced oxidation processes (SR-AOP): Thermally vs UV-assisted persulphate activation. Chemical Engineering Research and Design, 2019, 122, 94-101.	5.6	63
14	Combating paraben pollution in surface waters with a variety of photocatalyzed systems: Looking for the most efficient technology. Open Chemistry, 2019, 17, 1317-1327.	1.9	7
15	2nd International Conference on Green Chemistry and Sustainable Engineering (GreenChemSE16), Rome, Italy, 20–22 July, 2016. Green Processing and Synthesis, 2017, 6, .	3.4	4
16	Ultraviolet-Photoassisted Advanced Oxidation of Parabens Catalyzed by Hydrogen Peroxide and Titanium Dioxide. Improving the System. Industrial & Engineering Chemistry Research, 2016, 55, 5152-5160.	3.7	16
17	Degradation of Parabens in Different Aqueous Matrices by Several O ₃ -Derived Advanced Oxidation Processes. Industrial & Engineering Chemistry Research, 2016, 55, 5161-5172. 	3.7	35
18	Parabens abatement from surface waters by electrochemical advanced oxidation with boron doped diamond anodes. Environmental Science and Pollution Research, 2016, 23, 20315-20330.	5.3	19

#	Article	IF	CITATIONS
19	Preface: 1st International Conference on Chemical and Biochemical Engineering (ICCBE15), Paris, France, July 20–22, 2015. Industrial & Engineering Chemistry Research, 2016, 55, 5127-5127.	3.7	0
20	CONDUCTIVE-DIAMOND ELECTROCHEMICAL OXIDATION OF A PHARMACEUTICAL EFFLUENT WITH HIGH CHEMICAL OXYGEN DEMAND (COD). KINETICS AND OPTIMIZATION OF THE PROCESS BY RESPONSE SURFACE METHODOLOGY (RSM). Environmental Engineering and Management Journal, 2016, 15, 27-34.	0.6	1
21	Combined treatment of olive mill wastewater by Fenton's reagent and anaerobic biological process. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2015, 50, 161-168.	1.7	49
22	Electrochemical Degradation of Carbamazepine in Aqueous Solutions – Optimization of Kinetic Aspects by Design of Experiments. Clean - Soil, Air, Water, 2014, 42, 1534-1540.	1.1	11
23	Fenton advanced oxidation of emerging pollutants: parabens. International Journal of Energy and Environmental Engineering, 2014, 5, 1.	2.5	28
24	Feasibility of electrochemical degradation of pharmaceutical pollutants in different aqueous matrices: Optimization through design of experiments. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2014, 49, 843-850.	1.7	8
25	Advanced photochemical oxidation of emergent micropollutants: Carbamazepine. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2014, 49, 988-997.	1.7	8
26	Removal of Carbamazepine, Naproxen, and Trimethoprim from Water by Amberlite XADâ€7: A Kinetic Study. Clean - Soil, Air, Water, 2013, 41, 1052-1061.	1.1	22
27	Advanced Photochemical Degradation of Emerging Pollutants: Methylparaben. Water, Air, and Soil Pollution, 2013, 224, 1.	2.4	24
28	Electrical resistivity of YSZ-coated stainless steel electrodes. A study by response surface methodology. Journal of Alloys and Compounds, 2013, 577, 360-369.	5.5	7
29	Removal of Trimethoprim by a Low-Cost Adsorbent: Influence of Operation Conditions. Water, Air, and Soil Pollution, 2012, 223, 4577-4588.	2.4	4
30	Ozonation of a Carbamazepine Effluent. Designing the Operational Parameters Under Economic Considerations. Water, Air, and Soil Pollution, 2012, 223, 5999-6007.	2.4	10
31	Fenton + Fenton-like Integrated Process for Carbamazepine Degradation: Optimizing the System. Industrial & Engineering Chemistry Research, 2012, 51, 2531-2538.	3.7	53
32	Natural Adsorbents Derived from Tannin Extracts for Pharmaceutical Removal in Water. Industrial & Engineering Chemistry Research, 2012, 51, 50-57.	3.7	24
33	Electrochemical Degradation of a Real Pharmaceutical Effluent. Water, Air, and Soil Pollution, 2012, 223, 2685-2694.	2.4	48
34	Development and optimization of the BDD-electrochemical oxidation of the antibiotic trimethoprim in aqueous solution. Desalination, 2011, 280, 197-202.	8.2	52
35	Conductiveâ€diamond electrochemical advanced oxidation of naproxen in aqueous solution: optimizing the process. Journal of Chemical Technology and Biotechnology, 2011, 86, 121-127.	3.2	27
36	Removal of common pharmaceuticals present in surface waters by Amberlite XAD-7 acrylic-ester-resin: Influence of pH and presence of other drugs. Desalination, 2011, 269, 231-238.	8.2	121

#	Article	IF	CITATIONS
37	Anodic oxidation of ketoprofen on boron-doped diamond (BDD) electrodes. Role of operative parameters. Chemical Engineering Journal, 2010, 162, 1012-1018.	12.7	66
38	On the use of carbon blacks as potential low-cost adsorbents for the removal of non-steroidal anti-inflammatory drugs from river water. Journal of Hazardous Materials, 2010, 177, 1046-1053.	12.4	117
39	Reaction of phenolic acids with Fenton-generated hydroxyl radicals: Hammett correlation. Desalination, 2010, 252, 167-171.	8.2	15
40	Electrochemical Advanced Oxidation of Carbamazepine on Boron-Doped Diamond Anodes. Influence of Operating Variables. Industrial & Engineering Chemistry Research, 2010, 49, 8353-8359.	3.7	44
41	Removal of chlorophenols in aqueous solution by carbon black low-cost adsorbents. Equilibrium study and influence of operation conditions. Journal of Hazardous Materials, 2009, 169, 302-308.	12.4	39
42	Phenolic Acids Ozonation: QSAR Analysis and pH Influence on the Selectivity of Ozone. Journal of Advanced Oxidation Technologies, 2009, 12, .	0.5	1
43	Aluminium sulfate as coagulant for highly polluted cork processing wastewater: Evaluation of settleability parameters and design of a clarifier-thickener unit. Journal of Hazardous Materials, 2007, 148, 6-14.	12.4	26
44	Aluminium sulfate as coagulant for highly polluted cork processing wastewaters: Removal of organic matter. Journal of Hazardous Materials, 2007, 148, 15-21.	12.4	43
45	Cork processing wastewaters treatment by an ozonization/ultrafiltration integrated process. Desalination, 2006, 191, 148-152.	8.2	17
46	Nitrate removal from groundwater using Amberlite IRN-78: Modelling the system. Applied Surface Science, 2006, 252, 6031-6035.	6.1	39
47	Kinetic models of an anaerobic bioreactor for restoring wastewater generated by industrial chickpea protein production. International Biodeterioration and Biodegradation, 2006, 57, 114-120.	3.9	14
48	Vis and UV photocatalytic detoxification methods (using TiO2, TiO2/H2O2, TiO2/O3, TiO2/S2O82â^, O3,) Tj ETQ	9q04.0 rg8	3T /Oyerlock
49	Physico-chemical treatment for the depuration of wine distillery wastewaters (vinasses). Water Science and Technology, 2005, 51, 159-166.	2.5	38
50	Degradation of wine distillery wastewaters by the combination of aerobic biological treatment with chemical oxidation by Fenton's reagent. Water Science and Technology, 2005, 51, 167-174.	2.5	30
51	Evaluation of Ferric Chloride as a Coagulant for Cork Processing Wastewaters. Influence of the Operating Conditions on the Removal of Organic Matter and Settleability Parameters. Industrial & Engineering Chemistry Research, 2005, 44, 6539-6548.	3.7	54
52	Use of99mTcO4-and Rhodamine WTas tracers and the mathematical convolution procedure to establish the alarm model in the Almendares River. Journal of Radioanalytical and Nuclear Chemistry, 2004, 260, 417-420.	1.5	4
53	Advanced oxidation of cork-processing wastewater using Fenton's reagent: kinetics and stoichiometry. Journal of Chemical Technology and Biotechnology, 2004, 79, 407-412.	3.2	35

⁵⁴ Integrated Fenton's reagent—coagulation/flocculation process for the treatment of cork processing uastewaters. Journal of Hazardous Materials, 2004, 107, 115-121. 12.4 55

JOAQUIN R DOMINGUEZ

#	Article	IF	CITATIONS
55	Mesophilic anaerobic digestion in a fluidised-bed reactor of wastewater from the production of protein isolates from chickpea flour. Process Biochemistry, 2004, 39, 1913-1921.	3.7	55
56	Treatment of Cork Process Wastewater by a Successive Chemicalâ^'Physical Method. Journal of Agricultural and Food Chemistry, 2004, 52, 4501-4507.	5.2	39
57	Technetium-99m as a tracer for the liquid RTD measurement in opaque anaerobic digester: application in a sugar wastewater treatment plant. Chemical Engineering and Processing: Process Intensification, 2003, 42, 857-865.	3.6	22
58	Kinetics of the reaction between ozone and phenolic acids present in agro-industrial wastewaters. Water Research, 2001, 35, 1077-1085.	11.3	56
59	Comparison of the degradation of p-hydroxybenzoic acid in aqueous solution by several oxidation processes. Chemosphere, 2001, 42, 351-359.	8.2	78
60	Kinetic model for phenolic compound oxidation by Fenton's reagent. Chemosphere, 2001, 45, 85-90.	8.2	138
61	Kinetics of the Oxidation ofp-Hydroxybenzoic Acid by the H2O2/UV System. Industrial & Engineering Chemistry Research, 2001, 40, 3104-3108.	3.7	23
62	Degradation of olive mill wastewater by the combination of Fenton's reagent and ozonation processes with an aerobic biological treatment. Water Science and Technology, 2001, 44, 103-108.	2.5	81
63	Oxidation of p-hydroxybenzoic acid by UV radiation and by TiO2/UV radiation: comparison and modelling of reaction kinetic. Journal of Hazardous Materials, 2001, 83, 255-264.	12.4	109
64	Advanced oxidation processes for the degradation ofp-hydroxybenzoic acid 1: Photo-assisted ozonation. Journal of Chemical Technology and Biotechnology, 2001, 76, 1235-1242.	3.2	3
65	Advanced oxidation processes for the degradation ofp-hydroxybenzoic acid 2: Photo-assisted Fenton oxidation. Journal of Chemical Technology and Biotechnology, 2001, 76, 1243-1248.	3.2	7
66	OZONATION KINETICS OF PHENOLIC COMPOUNDS PRESENT IN TABLE OLIVE WASTEWATERS:p-HYDROXYBENZOIC ACID, TYROSOL ANDp-COUMARIC ACID. Chemical Engineering Communications, 2001, 184, 157-174.	2.6	7
67	Ozone treatment of black olive wastewaters. Grasas Y Aceites, 2001, 52, .	0.9	1
68	Ozonation of black-table-olive industrial wastewaters: effect of an aerobic biological pretreatment. Journal of Chemical Technology and Biotechnology, 2000, 75, 561-568.	3.2	24
69	Aerobic biological treatment of black table olive washing wastewaters: effect of an ozonation stage. Process Biochemistry, 2000, 35, 1183-1190.	3.7	43
70	Kinetics of p-hydroxybenzoic acid photodecomposition and ozonation in a batch reactor. Journal of Hazardous Materials, 2000, 73, 161-178.	12.4	35
71	Treatment of black-olive wastewaters by ozonation and aerobic biological degradation. Water Research, 2000, 34, 3515-3522.	11.3	75
72	Mixing characterization in batch reactors using the radiotracer technique. Journal of Radioanalytical and Nuclear Chemistry, 1999, 241, 337-340.	1.5	5

#	Article	IF	CITATIONS
73	Aerobic treatment of black olive wastewater and the effect of an ozonation stage. Bioprocess and Biosystems Engineering, 1999, 20, 355.	0.5	20