List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5101312/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Wastewater bypass is a major temporary point-source of antibiotic resistance genes and multi-resistance risk factors in a Swiss river. Water Research, 2022, 208, 117827.	5.3	12
2	Successful mainstream nitritation through NOB inactivation. Science of the Total Environment, 2022, 822, 153546.	3.9	14
3	Long-read metagenomic sequencing reveals shifts in associations of antibiotic resistance genes with mobile genetic elements from sewage to activated sludge. Microbiome, 2022, 10, 20.	4.9	52
4	Microbial Nitrogen Transformation Potential in Sediments of Two Contrasting Lakes Is Spatially Structured but Seasonally Stable. MSphere, 2022, 7, e0101321.	1.3	10
5	When rain overwhelms the sewers, antibiotic-resistant bacteria flood the river. , 2022, 3, .		0
6	Microeukaryotic gut parasites in wastewater treatment plants: diversity, activity, and removal. Microbiome, 2022, 10, 27.	4.9	15
7	Successful year-round mainstream partial nitritation anammox: Assessment of effluent quality, performance and N2O emissions. Water Research X, 2022, 16, 100145.	2.8	28
8	Demonstrating a Comprehensive Wastewater-Based Surveillance Approach That Differentiates Globally Sourced Resistomes. Environmental Science & Technology, 2022, 56, 14982-14993.	4.6	27
9	Temperature modulates stress response in mainstream anammox reactors. Communications Biology, 2021, 4, 23.	2.0	15
10	Nitrogen isotope effects can be used to diagnose N transformations in wastewater anammox systems. Scientific Reports, 2021, 11, 7850.	1.6	4
11	Linking seasonal N2O emissions and nitrification failures to microbial dynamics in a SBR wastewater treatment plant. Water Research X, 2021, 11, 100098.	2.8	26
12	Unraveling the riverine antibiotic resistome: The downstream fate of anthropogenic inputs. Water Research, 2021, 197, 117050.	5.3	50
13	Distinct growth stages controlled by the interplay of deterministic and stochastic processes in functional anammox biofilms. Water Research, 2021, 200, 117225.	5.3	39
14	Pathogenic and Indigenous Denitrifying Bacteria are Transcriptionally Active and Key Multi-Antibiotic-Resistant Players in Wastewater Treatment Plants. Environmental Science & Technology, 2021, 55, 10862-10874.	4.6	60
15	Microbial methane oxidation efficiency and robustness during lake overturn. Limnology and Oceanography Letters, 2021, 6, 320-328.	1.6	11
16	Niche partitioning of methane-oxidizing bacteria along the oxygen–methane counter gradient of stratified lakes. ISME Journal, 2020, 14, 274-287.	4.4	63
17	A global multinational survey of cefotaxime-resistant coliforms in urban wastewater treatment plants. Environment International, 2020, 144, 106035.	4.8	55
18	Environmental and Microbial Interactions Shape Methane-Oxidizing Bacterial Communities in a Stratified Lake. Frontiers in Microbiology, 2020, 11, 579427.	1.5	18

#	Article	IF	CITATIONS
19	Growth and rapid succession of methanotrophs effectively limit methane release during lake overturn. Communications Biology, 2020, 3, 108.	2.0	40
20	Every fifth published metagenome is not available to science. PLoS Biology, 2020, 18, e3000698.	2.6	18
21	Lake mixing regime selects apparent methane oxidation kinetics of the methanotroph assemblage. Biogeosciences, 2020, 17, 4247-4259.	1.3	12
22	Aerobic methane oxidation under copper scarcity in a stratified lake. Scientific Reports, 2019, 9, 4817.	1.6	20
23	Predatorâ€induced changes in dissolved organic carbon dynamics. Oikos, 2019, 128, 430-440.	1.2	13
24	Wastewater treatment plant resistomes are shaped by bacterial composition, genetic exchange, and upregulated expression in the effluent microbiomes. ISME Journal, 2019, 13, 346-360.	4.4	289
25	Phylogenetic clustering of small low nucleic acid-content bacteria across diverse freshwater ecosystems. ISME Journal, 2018, 12, 1344-1359.	4.4	84
26	Water and sanitation: an essential battlefront in the war on antimicrobial resistance. FEMS Microbiology Ecology, 2018, 94, .	1.3	104
27	A historical legacy of antibiotic utilization on bacterial seed banks in sediments. PeerJ, 2018, 6, e4197.	0.9	8
28	Dissemination of antibiotic resistance genes associated with the sporobiota in sediments impacted by wastewater. PeerJ, 2018, 6, e4989.	0.9	12
29	Growth of <i>Nitrosococcus</i> -Related Ammonia Oxidizing Bacteria Coincides with Extremely Low pH Values in Wastewater with High Ammonia Content. Environmental Science & Technology, 2017, 51, 6857-6866.	4.6	64
30	The effect of topâ€predator presence and phenotype on aquatic microbial communities. Ecology and Evolution, 2017, 7, 1572-1582.	0.8	9
31	Strong impact of anthropogenic contamination on the coâ€occurrence patterns of a riverine microbial community. Environmental Microbiology, 2017, 19, 4993-5009.	1.8	213
32	Toward a Comprehensive Strategy to Mitigate Dissemination of Environmental Sources of Antibiotic Resistance. Environmental Science & Technology, 2017, 51, 13061-13069.	4.6	236
33	Bacteriaâ€induced mixing in natural waters. Geophysical Research Letters, 2017, 44, 9424-9432.	1.5	38
34	Microbes as Engines of Ecosystem Function: When Does Community Structure Enhance Predictions of Ecosystem Processes?. Frontiers in Microbiology, 2016, 7, 214.	1.5	479
35	Inactivation of Antibiotic Resistant Bacteria and Resistance Genes by Ozone: From Laboratory Experiments to Full-Scale Wastewater Treatment. Environmental Science & Technology, 2016, 50, 11862-11871.	4.6	175
36	Hydrologic linkages drive spatial structuring of bacterial assemblages and functioning in alpine floodplains. Frontiers in Microbiology, 2015, 6, 1221.	1.5	21

#	Article	IF	CITATIONS
37	Does human activity impact the natural antibiotic resistance background? Abundance of antibiotic resistance genes in 21 Swiss lakes. Environment International, 2015, 81, 45-55.	4.8	209
38	Tackling antibiotic resistance: the environmental framework. Nature Reviews Microbiology, 2015, 13, 310-317.	13.6	1,612
39	Estimating Bacterial Diversity for Ecological Studies: Methods, Metrics, and Assumptions. PLoS ONE, 2015, 10, e0125356.	1.1	89
40	Spatio-Temporal Patterns of Major Bacterial Groups in Alpine Waters. PLoS ONE, 2014, 9, e113524.	1.1	17
41	Physical Extraction of Microorganisms From Water-Saturated, Packed Sediment. Water Environment Research, 2014, 86, 407-416.	1.3	1
42	Inâ€5itu Sonication for Enhanced Recovery of Aquifer Microbial Communities. Ground Water, 2014, 52, 737-747.	0.7	6
43	Early diagenetic processes generate iron and manganese oxide layers in the sediments of Lake Baikal, Siberia. Environmental Sciences: Processes and Impacts, 2014, 16, 879-889.	1.7	37
44	Wastewater as a point source of antibiotic-resistance genes in the sediment of a freshwater lake. ISME Journal, 2014, 8, 1381-1390.	4.4	354
45	Bacterial structures and ecosystem functions in glaciated floodplains: contemporary states and potential future shifts. ISME Journal, 2013, 7, 2361-2373.	4.4	49
46	Chemical Extraction of Microorganisms from Water-Saturated, Packed Sediment. Water Environment Research, 2013, 85, 503-513.	1.3	4
47	A brief multi-disciplinary review on antimicrobial resistance in medicine and its linkage to the global environmental microbiota. Frontiers in Microbiology, 2013, 4, 96.	1.5	246
48	Response of lotic microbial communities to altered water source and nutritional state in a glaciated alpine floodplain. Limnology and Oceanography, 2013, 58, 951-965.	1.6	17
49	Impact of particulate organic matter composition and degradation state on the vertical structure of particle-associated and planktonic lacustrine bacteria. Aquatic Microbial Ecology, 2013, 69, 81-92.	0.9	7
50	Increased Levels of Multiresistant Bacteria and Resistance Genes after Wastewater Treatment and Their Dissemination into Lake Geneva, Switzerland. Frontiers in Microbiology, 2012, 3, 106.	1.5	314
51	Fundamentals of Microbial Community Resistance and Resilience. Frontiers in Microbiology, 2012, 3, 417.	1.5	1,131
52	Contribution of bacterial cells to lacustrine organic matter based on amino sugars and d-amino acids. Geochimica Et Cosmochimica Acta, 2012, 89, 159-172.	1.6	26
53	Simple Absolute Quantification Method Correcting for Quantitative PCR Efficiency Variations for Microbial Community Samples. Applied and Environmental Microbiology, 2012, 78, 4481-4489.	1.4	179
54	Bacterial Chitin Hydrolysis in Two Lakes with Contrasting Trophic Statuses. Applied and Environmental Microbiology, 2012, 78, 695-704.	1.4	23

#	Article	IF	CITATIONS
55	Local Conditions Structure Unique Archaeal Communities in the Anoxic Sediments of Meromictic Lake Kivu. Microbial Ecology, 2012, 64, 291-310.	1.4	34
56	Response of sediment microbial community structure in a freshwater reservoir to manipulations in oxygen availability. FEMS Microbiology Ecology, 2012, 80, 248-263.	1.3	23
57	Methane Formation and Future Extraction in Lake Kivu. , 2012, , 165-180.		13
58	Methane sources and sinks in Lake Kivu. Journal of Geophysical Research, 2011, 116, .	3.3	96
59	Analysis of sulfurâ€related transcription by Roseobacter communities using a taxonâ€specific functional gene microarray. Environmental Microbiology, 2011, 13, 453-467.	1.8	22
60	Regime Shift and Microbial Dynamics in a Sequencing Batch Reactor for Nitrification and Anammox Treatment of Urine. Applied and Environmental Microbiology, 2011, 77, 5897-5907.	1.4	75
61	Changes in Dimethylsulfoniopropionate Demethylase Gene Assemblages in Response to an Induced Phytoplankton Bloom. Applied and Environmental Microbiology, 2011, 77, 524-531.	1.4	45
62	Methane Oxidation (Aerobic). Encyclopedia of Earth Sciences Series, 2011, , 575-578.	0.1	11
63	High Diversity of Diazotrophs in the Forefield of a Receding Alpine Glacier. Microbial Ecology, 2009, 57, 179-190.	1.4	124
64	Microbial communities in contrasting freshwater marsh microhabitats. FEMS Microbiology Ecology, 2009, 69, 84-97.	1.3	33
65	Large iron isotope fractionation at the oxic–anoxic boundary in Lake Nyos. Earth and Planetary Science Letters, 2009, 285, 52-60.	1.8	70
66	Progress in the Ecological Genetics and Biodiversity of Freshwater Bacteria. BioScience, 2008, 58, 103-113.	2.2	33
67	Detection and Quantification of <i>Dehalococcoides</i> -Related Bacteria in a Chlorinated Ethene-Contaminated Aquifer Undergoing Natural Attenuation. Bioremediation Journal, 2008, 12, 193-209.	1.0	6
68	Transcriptional response of <i>Silicibacter pomeroyi</i> DSSâ€3 to dimethylsulfoniopropionate (DMSP). Environmental Microbiology, 2007, 9, 2742-2755.	1.8	54
69	Effects of pioneering plants on microbial structures and functions in a glacier forefield. Biology and Fertility of Soils, 2007, 44, 289-297.	2.3	56
70	Variation in Microbial Community Composition and Culturability in the Rhizosphere of Leucanthemopsis alpina (L.) Heywood and Adjacent Bare Soil Along an Alpine Chronosequence. Microbial Ecology, 2006, 52, 679-692.	1.4	66
71	Bacterial Taxa That Limit Sulfur Flux from the Ocean. Science, 2006, 314, 649-652.	6.0	296
72	Effects of model root exudates on structure and activity of a soil diazotroph community. Environmental Microbiology, 2005, 7, 1711-1724.	1.8	166

#	Article	IF	CITATIONS
73	New Molecular Screening Tools for Analysis of Free-Living Diazotrophs in Soil. Applied and Environmental Microbiology, 2004, 70, 240-247.	1.4	138
74	EndophyticnifHgene diversity in African sweet potato. Canadian Journal of Microbiology, 2003, 49, 549-555.	0.8	87
75	mRNA Extraction and Reverse Transcription-PCR Protocol for Detection of nifH Gene Expression by Azotobacter vinelandii in Soil. Applied and Environmental Microbiology, 2003, 69, 1928-1935.	1.4	148
76	A strategy for optimizing quality and quantity of DNA extracted from soil. Journal of Microbiological Methods, 2001, 45, 7-20.	0.7	260
77	Trait-Based Model Reproduces Patterns of Population Structure and Diversity of Methane Oxidizing Bacteria in a Stratified Lake. Frontiers in Environmental Science, 0, 10, .	1.5	1