
Suren A Tatulian

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5100866/publications.pdf Version: 2024-02-01

SLIDEN Δ ΤΑΤΙΙΙΙΑΝ

#	Article	IF	CITATIONS
1	Holotoxin disassembly by protein disulfide isomerase is less efficient for Escherichia coli heat-labile enterotoxin than cholera toxin. Scientific Reports, 2022, 12, 34.	3.3	9
2	Challenges and hopes for Alzheimer's disease. Drug Discovery Today, 2022, 27, 1027-1043.	6.4	87
3	Mutual structural effects of unmodified and pyroglutamylated amyloid β peptides during aggregation. Journal of Peptide Science, 2021, 27, e3312.	1.4	3
4	Effects of AÎ ² -derived peptide fragments on fibrillogenesis of AÎ ² . Scientific Reports, 2021, 11, 19262.	3.3	10
5	Reversal of Alpha-Synuclein Fibrillization by Protein Disulfide Isomerase. Frontiers in Cell and Developmental Biology, 2020, 8, 726.	3.7	7
6	Stability and Conformational Resilience of Protein Disulfide Isomerase. Biochemistry, 2019, 58, 3572-3584.	2.5	9
7	Quercetin-3-Rutinoside Blocks the Disassembly of Cholera Toxin by Protein Disulfide Isomerase. Toxins, 2019, 11, 458.	3.4	11
8	FTIR Analysis of Proteins and Protein–Membrane Interactions. Methods in Molecular Biology, 2019, 2003, 281-325.	0.9	35
9	Membrane Pore Formation by Peptides Studied by Fluorescence Techniques. Methods in Molecular Biology, 2019, 2003, 449-464.	0.9	5
10	HSC70 and HSP90 chaperones perform complementary roles in translocation of the cholera toxin A1 subunit from the endoplasmic reticulum to the cytosol. Journal of Biological Chemistry, 2019, 294, 12122-12131.	3.4	18
11	Structure of amyloid β25–35 in lipid environment and cholesterol-dependent membrane pore formation. Scientific Reports, 2019, 9, 2689.	3.3	43
12	From the Wave Equation to Biomolecular Structure and Dynamics. Trends in Biochemical Sciences, 2018, 43, 749-751.	7.5	3
13	Protein disulfide isomerase does not act as an unfoldase in the disassembly of cholera toxin. Bioscience Reports, 2018, 38, .	2.4	8
14	INSR. , 2018, , 2608-2619.		0
15	Biophysical Characterization of Membrane Pores Formed by Amyloid Beta(25-35). Biophysical Journal, 2017, 112, 226a.	0.5	Ο
16	Unmodified and pyroglutamylated amyloid β peptides form hypertoxic heteroâ€oligomers of unique secondary structure. FEBS Journal, 2017, 284, 1355-1369.	4.7	15
17	Membrane Binding and Pore Formation by a Cytotoxic Fragment of Amyloid \hat{I}^2 Peptide. Journal of Physical Chemistry B, 2017, 121, 10293-10305.	2.6	55
18	Interfacial Enzymes. Methods in Enzymology, 2017, 583, 197-230.	1.0	13

#	Article	IF	CITATIONS
19	Structural Transitions in Unmodified and Pyroglutamylated Amyloid β Peptides upon Hydration by Water Vapor. Biophysical Journal, 2016, 110, 218a-219a.	0.5	Ο
20	Thermal Unfolding of the Pertussis Toxin S1 Subunit Facilitates Toxin Translocation to the Cytosol by the Mechanism of Endoplasmic Reticulum-Associated Degradation. Infection and Immunity, 2016, 84, 3388-3398.	2.2	22
21	INSR. , 2016, , 1-12.		Ο
22	lsotope-edited FTIR reveals distinct aggregation and structural behaviors of unmodified and pyroglutamylated amyloid β peptides. Physical Chemistry Chemical Physics, 2015, 17, 32149-32160.	2.8	14
23	Use of the amicyanin signal sequence for efficient periplasmic expression in E. coli of a human antibody light chain variable domain. Protein Expression and Purification, 2015, 108, 9-12.	1.3	11
24	Morphology-Dependent HIV-Enhancing Effect of Semen-Derived Enhancer of Viral Infection. Biophysical Journal, 2015, 108, 2028-2037.	0.5	1
25	Structural Dynamics of Insulin Receptor and Transmembrane Signaling. Biochemistry, 2015, 54, 5523-5532.	2.5	51
26	Substrate-Induced Unfolding of Protein Disulfide Isomerase Displaces the Cholera Toxin A1 Subunit from Its Holotoxin. PLoS Pathogens, 2014, 10, e1003925.	4.7	29
27	Co- and Post-translocation Roles for HSP90 in Cholera Intoxication. Journal of Biological Chemistry, 2014, 289, 33644-33654.	3.4	33
28	<scp>ADP</scp> â€ribosylation factor 6 acts as an allosteric activator for the folded but not disordered cholera toxin <scp>A</scp> 1 polypeptide. Molecular Microbiology, 2014, 94, 898-912.	2.5	21
29	Molecular-Scale GPS: Positioning a Biosensor Peptide on RyR. Biophysical Journal, 2014, 107, 2003-2005.	0.5	1
30	Pyroglutamylated Amyloid-β Peptide Reverses Cross β-Sheets by a Prion-Like Mechanism. Journal of Physical Chemistry B, 2014, 118, 5637-5643.	2.6	22
31	The sole tryptophan of amicyanin enhances its thermal stability but does not influence the electronic properties of the type 1 copper site. Archives of Biochemistry and Biophysics, 2014, 550-551, 20-27.	3.0	7
32	Membrane Destabilization by Alzheimer's Amyloid β Peptide. Biophysical Journal, 2013, 104, 239a-240a.	0.5	0
33	Structural Characterization of Membrane Proteins and Peptides by FTIR and ATR-FTIR Spectroscopy. Methods in Molecular Biology, 2013, 974, 177-218.	0.9	71
34	Transmembrane pore formation by the carboxyl terminus of Bax protein. Biochimica Et Biophysica Acta - Biomembranes, 2013, 1828, 732-742.	2.6	21
35	Lipid Rafts Alter the Stability and Activity of the Cholera Toxin A1 Subunit*. Journal of Biological Chemistry, 2012, 287, 30395-30405.	3.4	29
36	Molecular Basis for Membrane Pore Formation by Bax Protein Carboxyl Terminus. Biochemistry, 2012, 51, 9406-9419.	2.5	19

#	Article	IF	CITATIONS
37	Structure of a Peptide Adsorbed on Graphene and Graphite. Nano Letters, 2012, 12, 2342-2346.	9.1	134
38	Mechanisms of Interfacial Activation of Human and Bee Venom Phospholipase A2 Enzymes. Biophysical Journal, 2011, 100, 509a.	0.5	0
39	C2 Domain-Containing Phosphoprotein CDP138 Regulates GLUT4 Insertion into the Plasma Membrane. Cell Metabolism, 2011, 14, 378-389.	16.2	64
40	A Therapeutic Chemical Chaperone Inhibits Cholera Intoxication and Unfolding/Translocation of the Cholera Toxin A1 Subunit. PLoS ONE, 2011, 6, e18825.	2.5	28
41	Protein-disulfide Isomerase Displaces the Cholera Toxin A1 Subunit from the Holotoxin without Unfolding the A1 Subunit. Journal of Biological Chemistry, 2011, 286, 22090-22100.	3.4	48
42	Modulation of Toxin Stability by 4-Phenylbutyric Acid and Negatively Charged Phospholipids. PLoS ONE, 2011, 6, e23692.	2.5	7
43	Structural analysis of proteins by isotope-edited FTIR spectroscopy. Spectroscopy, 2010, 24, 37-43.	0.8	11
44	Unusual Thermal Stability of Human Secreted Phospholipase A2 Enzymes. Biophysical Journal, 2010, 98, 86a-87a.	0.5	1
45	A host-specific factor is necessary for efficient folding of the autotransporter plasmid-encoded toxinâ~†. Biochimie, 2010, 92, 171-177.	2.6	8
46	Contribution of Subdomain Structure to the Thermal Stability of the Cholera Toxin A1 Subunit. Biochemistry, 2010, 49, 8839-8846.	2.5	29
47	A novel mode of translocation for cytolethal distending toxin. Biochimica Et Biophysica Acta - Molecular Cell Research, 2009, 1793, 489-495.	4.1	33
48	Effect of Guggulsterone and Cembranoids of <i>Commiphora mukul</i> on Pancreatic Phospholipase A ₂ : Role in Hypocholesterolemia. Journal of Natural Products, 2009, 72, 24-28.	3.0	24
49	Stabilization of the Tertiary Structure of the Cholera Toxin A1 Subunit Inhibits Toxin Dislocation and Cellular Intoxication. Journal of Molecular Biology, 2009, 393, 1083-1096.	4.2	43
50	Determination of helix orientations in proteins. Computational Biology and Chemistry, 2008, 32, 370-374.	2.3	9
51	Structural Characteristics of the Plasmid-Encoded Toxin from Enteroaggregative Escherichia coli. Biochemistry, 2008, 47, 9582-9591.	2.5	11
52	Conformational Instability of the Cholera Toxin A1 Polypeptide. Journal of Molecular Biology, 2007, 374, 1114-1128.	4.2	66
53	Effects of Lipid Phase Transition and Membrane Surface Charge on the Interfacial Activation of Phospholipase A ₂ . Biochemistry, 2007, 46, 13089-13100.	2.5	31
54	The Pertussis Toxin S1 Subunit Is a Thermally Unstable Protein Susceptible to Degradation by the 20S Proteasomeâ€. Biochemistry, 2006, 45, 13734-13740.	2.5	39

#	Article	IF	CITATIONS
55	Structural and Functional Effects of Tryptophans Inserted into the Membrane-binding and Substrate-binding Sites of Human Group IIA Phospholipase A2. Biochemistry, 2006, 45, 12448-12460.	2.5	18
56	Isoform-Specific Membrane Insertion of Secretory Phospholipase A2 and Functional Implications. Biochemistry, 2006, 45, 12436-12447.	2.5	33
57	Evidence for the Regulatory Role of the N-terminal Helix of Secretory Phospholipase A2 from Studies on Native and Chimeric Proteins. Journal of Biological Chemistry, 2005, 280, 36773-36783.	3.4	37
58	Positioning Membrane Proteins by Novel Protein Engineering and Biophysical Approaches. Journal of Molecular Biology, 2005, 351, 939-947.	4.2	38
59	Membrane Fluidity Is a Key Modulator of Membrane Binding, Insertion, and Activity of 5-Lipoxygenase. Biophysical Journal, 2005, 88, 4084-4094.	0.5	94
60	Modulation of Human 5-Lipoxygenase Activity by Membrane Lipids. Biochemistry, 2004, 43, 14653-14666.	2.5	43
61	The N-terminal α-Helix of Pancreatic Phospholipase A2 Determines Productive-mode Orientation of the Enzyme at the Membrane Surface. Journal of Molecular Biology, 2004, 344, 71-89.	4.2	46
62	Attenuated Total Reflection Fourier Transform Infrared Spectroscopy:Â A Method of Choice for Studying Membrane Proteins and Lipidsâ€. Biochemistry, 2003, 42, 11898-11907.	2.5	118
63	Structural Effects of Covalent Inhibition of Phospholipase A2 Suggest Allosteric Coupling between Membrane Binding and Catalytic Sites. Biophysical Journal, 2003, 84, 1773-1783.	0.5	33
64	Quantitative Characterization of Membrane Binding of Peripheral Proteins by Spin-Label EPR Spectroscopy. Journal of Physical Chemistry B, 2002, 106, 8870-8877.	2.6	7
65	The Inhibitory Action of Phospholamban Involves Stabilization of α-Helices within the Ca-ATPaseâ€. Biochemistry, 2002, 41, 741-751.	2.5	33
66	Toward Understanding Interfacial Activation of Secretory Phospholipase A2 (PLA2): Membrane Surface Properties and Membrane-Induced Structural Changes in the Enzyme Contribute Synergistically to PLA2 Activation. Biophysical Journal, 2001, 80, 789-800.	0.5	109
67	Secondary Structure, Orientation, Oligomerization, and Lipid Interactions of the Transmembrane Domain of Influenza Hemagglutinin. Biochemistry, 2000, 39, 496-507.	2.5	115
68	Structural dynamics of theStreptomyces lividansK+channel (SKC1): secondary structure characterization from FTIR spectroscopy. FEBS Letters, 1998, 423, 205-212.	2.8	42
69	Uncovering a Calcium-Regulated Membrane-Binding Mechanism for Soybean Lipoxygenase-1. Biochemistry, 1998, 37, 15481-15490.	2.5	53
70	Infrared spectroscopy of proteins and peptides in lipid bilayers. Quarterly Reviews of Biophysics, 1997, 30, 365-429.	5.7	609
71	Structural changes in a secretory phospholipase A2 Induced by membrane binding: a clue to interfacial activation?. Journal of Molecular Biology, 1997, 268, 809-815.	4.2	72
72	Effect of the N-terminal glycine on the secondary structure, orientation, and interaction of the influenza hemagglutinin fusion peptide with lipid bilayers. Biophysical Journal, 1996, 70, 2275-2286.	0.5	115

#	Article	IF	CITATIONS
73	Reversible pH-dependent Conformational Change of Reconstituted Influenza Hemagglutinin. Journal of Molecular Biology, 1996, 260, 312-316.	4.2	21
74	Evaluation of Divalent Cation Binding to Phosphatidylserine Membranes by an Analysis of Concentration Dependence of Surface Potential. Journal of Colloid and Interface Science, 1995, 175, 131-137.	9.4	9
75	Functional Reconstitution of Recombinant Phospholamban with Rabbit Skeletal Ca2+-ATPase. Journal of Biological Chemistry, 1995, 270, 9390-9397.	3.4	78
76	Secondary Structure and Orientation of Phospholamban Reconstituted in Supported Bilayers from Polarized Attenuated Total Reflection FTIR Spectroscopy. Biochemistry, 1995, 34, 4448-4456.	2.5	112
77	Characterization of two membrane-bound forms of OmpA. Biochemistry, 1995, 34, 1921-1929.	2.5	101
78	Orientation of functional and nonfunctional PTS permease signal sequences in lipid bilayers. A polarized attenuated total reflection infrared study. Biochemistry, 1993, 32, 7720-7726.	2.5	76
79	Fluidity-dependence of membrane adhesiveness can be explained by thermotropic shifts in surface potential. Biochimica Et Biophysica Acta - Biomembranes, 1987, 901, 161-165.	2.6	16
80	Effect of lipid phase transition on the binding of anions to dimyristoylphosphatidylcholine liposomes. Biochimica Et Biophysica Acta - Biomembranes, 1983, 736, 189-195.	2.6	113