
Luis Eduardo A Camargo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5100806/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Comparison of the genomes of two Xanthomonas pathogens with differing host specificities. Nature, 2002, 417, 459-463.	13.7	1,074
2	The genome sequence of the plant pathogen Xylella fastidiosa. Nature, 2000, 406, 151-157.	13.7	827
3	Comparative Genomics of Two Leptospira interrogans Serovars Reveals Novel Insights into Physiology and Pathogenesis. Journal of Bacteriology, 2004, 186, 2164-2172.	1.0	406
4	Comparison of RFLP and RAPD markers to estimating genetic relationships within and among cruciferous species. Theoretical and Applied Genetics, 1994, 88, 973-980.	1.8	344
5	Comparative Analyses of the Complete Genome Sequences of Pierce's Disease and Citrus Variegated Chlorosis Strains of Xylella fastidiosa. Journal of Bacteriology, 2003, 185, 1018-1026.	1.0	307
6	Analysis and Functional Annotation of an Expressed Sequence Tag Collection for Tropical Crop Sugarcane. Genome Research, 2003, 13, 2725-2735.	2.4	254
7	COMPARATIVEGENOMICANALYSIS OFPLANT-ASSOCIATEDBACTERIA. Annual Review of Phytopathology, 2002, 40, 169-189.	3.5	171
8	The Genome Sequence of the Gram-Positive Sugarcane Pathogen Leifsonia xyli subsp. xyli. Molecular Plant-Microbe Interactions, 2004, 17, 827-836.	1.4	119
9	Interleukin 10 gene promoter polymorphisms are associated with chronic periodontitis. Journal of Clinical Periodontology, 2004, 31, 443-448.	2.3	111
10	Development, characterization, and comparative analysis of polymorphism at common bean SSR loci isolated from genic and genomic sources. Genome, 2007, 50, 266-277.	0.9	85
11	Extension of the core map of common bean with EST-SSR, RGA, AFLP, and putative functional markers. Molecular Breeding, 2010, 25, 25-45.	1.0	72
12	Citrus leprosis virus C Infection Results in Hypersensitive-Like Response, Suppression of the JA/ET Plant Defense Pathway and Promotion of the Colonization of Its Mite Vector. Frontiers in Plant Science, 2016, 7, 1757.	1.7	67
13	Absence of mutations in the homeodomain of theMSX1 gene in patients with hypodontia. American Journal of Medical Genetics Part A, 2000, 92, 346-349.	2.4	66
14	A genomic approach to the understanding of Xylella fastidiosa pathogenicity. Current Opinion in Microbiology, 2000, 3, 459-462.	2.3	50
15	The anthracnose resistance locus Co-4 of common bean is located on chromosome 3 and contains putative disease resistance-related genes. Theoretical and Applied Genetics, 2004, 109, 690-699.	1.8	50
16	Comparative bioinformatic analysis of genes expressed in common bean (Phaseolus vulgaris L.) seedlings. Genome, 2005, 48, 562-570.	0.9	50
17	New resistance genes in the Zea mays: exserohilum turcicum pathosystem. Genetics and Molecular Biology, 2005, 28, 435-439.	0.6	49
18	Mapping of angular leaf spot resistance QTL in common bean (Phaseolus vulgaris L.) under different environments. BMC Genetics, 2012, 13, 50.	2.7	48

#	Article	IF	CITATIONS
19	Location of the Self-Incompatibility Locus in an RFLP and RAPD Map of Brassica oleracea. Journal of Heredity, 1997, 88, 57-60.	1.0	44
20	Comparison of root and foliar applications of potassium silicate in potentiating postâ€infection defences of melon against powdery mildew. Plant Pathology, 2015, 64, 1085-1093.	1.2	43
21	Culture and Generic Identification of Trypanosomatids of Phytophagous Hemiptera in Brazil. Journal of Protozoology, 1989, 36, 543-547.	0.9	42
22	Increasing the density of markers around a major QTL controlling resistance to angular leaf spot in common bean. Theoretical and Applied Genetics, 2013, 126, 2451-2465.	1.8	39
23	Outbreaks of Bacterial Spot Caused by Xanthomonas gardneri on Processing Tomato in Central-West Brazil. Plant Disease, 2004, 88, 157-161.	0.7	38
24	Evaluation of Monocot and Eudicot Divergence Using the Sugarcane Transcriptome. Plant Physiology, 2004, 134, 951-959.	2.3	38
25	Development and characterization of microsatellite markers from the yellow passion fruit (Passiflora edulis f. flavicarpa). Molecular Ecology Notes, 2005, 5, 331-333.	1.7	38
26	First Report of <i>Tomato chlorosis virus</i> Infecting Tomato Crops in Brazil. Plant Disease, 2008, 92, 1709-1709.	0.7	38
27	Dissecting Phaseolus vulgaris Innate Immune System against Colletotrichum lindemuthianum Infection. PLoS ONE, 2012, 7, e43161.	1.1	36
28	RAPD-based genetic linkage maps of yellow passion fruit (Passiflora edulisSims. f.flavicarpaDeg.). Genome, 2002, 45, 670-678.	0.9	35
29	Quantitative analysis of race-specific resistance to Colletotrichum lindemuthianum in common bean. Molecular Breeding, 2014, 34, 1313-1329.	1.0	35
30	QTL mapping for nodule number and common bacterial blight in Phaseolus vulgaris L Plant and Soil, 1998, 204, 135-145.	1.8	34
31	Liberibacters associated with orange jasmine in Brazil: incidence in urban areas and relatedness to citrus liberibacters. Plant Pathology, 2010, 59, 1044-1053.	1.2	34
32	Isolation and characterization of microsatellite markers from the sweet passion fruit (Passiflora) Tj ETQq0 0 0 rg	BT /Overlo 1.7	ck 10 Tf 50 2
33	Effect of potassium silicate on epidemic components of powdery mildew on melon. Plant Pathology, 2012, 61, 323-330.	1.2	32
34	Linkage and mapping of resistance genes to Xanthomonas axonopodis pv. passiflorae in yellow passion fruit. Genome, 2006, 49, 17-29.	0.9	26
35	Novel Insights Into the Early Stages of Ratoon Stunting Disease of Sugarcane Inferred from Transcript and Protein Analysis. Phytopathology, 2018, 108, 1455-1466.	1.1	25
	Time-series expression profiling of sugarcane leaves infected with Duccinia bughnii reveals an		

36Time-series expression profiling of sugarcane leaves infected with Puccinia kuehnii reveals an
ineffective defense system leading to susceptibility. Plant Cell Reports, 2020, 39, 873-889.2.825

#	Article	IF	CITATIONS
37	Development of a qPCR for Leifsonia xyli subsp. xyli and quantification of the effects of heat treatment of sugarcane cuttings on Lxx. Crop Protection, 2016, 80, 51-55.	1.0	22
38	Genome survey of resistance gene analogs in sugarcane: genomic features and differential expression of the innate immune system from a smut-resistant genotype. BMC Genomics, 2019, 20, 809.	1.2	22
39	An AFLP marker linked to the Pm-1 gene that confers resistance to Podosphaera xanthii race 1 in Cucumis melo. Genetics and Molecular Biology, 2008, 31, 547-550.	0.6	22
40	Caipira sweet orange + Rangpur lime: a somatic hybrid with potential for use as rootstock in the Brazilian citrus industry. Genetics and Molecular Biology, 2000, 23, 661-665.	0.6	21
41	Partial characterization of a bipartite begomovirus infecting yellow passion flower in Brazil. Plant Pathology, 2003, 52, 648-654.	1.2	21
42	Sequence Heterogeneity in the 16S rDNA of Tomato Big Bud Phytoplasma Belonging to Group 16SrIII. Journal of Phytopathology, 2006, 154, 245-249.	0.5	21
43	Linkage and mapping of quantitative trait loci associated with angular leaf spot and powdery mildew resistance in common beans. Genetics and Molecular Biology, 2017, 40, 109-122.	0.6	21
44	Characterization of a new potyvirus causing mosaic and flower variegation in Catharanthus roseus in Brazil. Scientia Agricola, 2011, 68, 687-690.	0.6	20
45	Common bean reaction to angular leaf spot comprises transcriptional modulation of genes in the ALS10.1 QTL. Frontiers in Plant Science, 2015, 6, 152.	1.7	20
46	Root-Knot Nematodes (<i>Meloidogyne</i> spp.) Parasitizing Resistant Tobacco Cultivars in Southern Brazil. Plant Disease, 2016, 100, 1222-1231.	0.7	19
47	Pfaffia mosaic virus: a new potyvirus found infecting Pfaffia glomerata in Brazil. Plant Pathology, 2004, 53, 368-373.	1.2	17
48	Genetic Diversity in Populations of <i>Dalbulus maidis</i> (DeLong and Wolcott) (Hemiptera:) Tj ETQq0 0 0 rgBT Entomology, 2007, 36, 204-212.	/Overlock 0.7	10 Tf 50 30 17
49	Mapping of resistance genes to races 1, 3 and 5 of Podosphaera xanthii in melon Pl 414723. Crop Breeding and Applied Biotechnology, 2013, 13, 349-355.	0.1	17
50	Resistência de variedades comerciais de cana-de-açúcar ao agente causal do raquitismo-da-soqueira. Ciencia Rural, 2009, 39, 1211-1214.	0.3	15
51	Sensibilidade a cobre, estreptomicina e oxitetraciclina em Xanthomonas spp. associadas Ã mancha-bacteriana do tomate para processamento industrial. Horticultura Brasileira, 2003, 21, 670-675.	0.1	15
52	Efeito do meio de cultura e do regime de luz na esporulação de Cercospora zeae-maydis. Summa Phytopathologica, 2006, 32, 92-94.	0.3	12
53	Characterization of new IS elements and studies of their dispersion in two subspecies of Leifsonia xyli. BMC Microbiology, 2008, 8, 127.	1.3	12
54	Molecular variability in the maize grey leaf spot pathogens in Brazil. Genetics and Molecular Biology, 2008, 31, 938-942.	0.6	12

#	Article	IF	CITATIONS
55	A molecular marker linked to the Prv1 gene that confers resistance to Papaya ringspot virus-type W in melon. Plant Breeding, 2006, 125, 187-190.	1.0	11
56	Regeneration and characterization of somatic hybrids combining sweet orange and mandarin/mandarin hybrid cultivars for citrus scion improvement. Plant Cell, Tissue and Organ Culture, 2012, 111, 385-392.	1.2	11
57	Controle genético da resistência à mancha-de-Phaeosphaeria em milho. Ciencia Rural, 2007, 37, 605-611.	0.3	11
58	Identificarion of contaminant bacteria in cachaça yeast by 16s rDNA gene sequencing. Scientia Agricola, 2008, 65, 508-515.	0.6	10
59	Raças de Xanthomonas spp. associadas à mancha-bacteriana em tomate para processamento industrial no Brasil. Horticultura Brasileira, 2004, 22, 80-86.	0.1	10
60	Breakdown of resistance in sweet pepper against Pepper yellow mosaic virus in Brazil. Scientia Agricola, 2009, 66, 267-269.	0.6	9
61	Complete Genome Sequence of Leifsonia xyli subsp. <i>cynodontis</i> Strain DSM46306, a Gram-Positive Bacterial Pathogen of Grasses. Genome Announcements, 2013, 1, .	0.8	9
62	Molecular and Pathogenic Diversity Among Brazilian Isolates of <i>Xanthomonas albilineans</i> Assessed with SSR Marker Loci. Plant Disease, 2014, 98, 540-546.	0.7	9
63	Capacidade de combinação e heterose para resistência a Puccinia polysora Underw. em milho. Scientia Agricola, 2001, 58, 777-783.	0.6	8
64	Biological and molecular characterization of Brazilian isolates of Zucchini yellow mosaic virus. Scientia Agricola, 2015, 72, 187-191.	0.6	8
65	No alternative hosts of the sugarcane pathogen Leifsonia xyli subsp. xyli were identified among grass and non-grass species using novel PCR primers. Tropical Plant Pathology, 2016, 41, 336-339.	0.8	8
66	Inheritance of resistance to anthracnose stalk rot (Colletotrichum graminicola) in tropical maize inbred lines. Crop Breeding and Applied Biotechnology, 2012, 12, 179-184.	0.1	8
67	First Report of Powdery Mildew on Flamboyant Tree Caused by <i>Erysiphe quercicola</i> in Brazil. Plant Disease, 2012, 96, 589-589.	0.7	7
68	Comparison of yield damage of tropical maize hybrids caused by anthracnose stalk rot. Tropical Plant Pathology, 2013, 38, 128-132.	0.8	7
69	Characterization of genes responsive to osmotic and oxidative stresses of the sugarcane bacterial pathogen Leifsonia xyli subsp. xyli. Brazilian Journal of Microbiology, 2020, 51, 77-86.	0.8	7
70	Gray Mold Caused by <i>Botryotinia fuckeliana</i> on Edible Pods of Pea in Brazil. Plant Disease, 2014, 98, 569-569.	0.7	7
71	Genetic analysis of soybean resistance to Fusarium solani f.sp. glycines. Genetics and Molecular Biology, 2004, 27, 400-408.	0.6	6
72	Interaction between resistance to Septoria tritici and phenological stages in wheat. Scientia Agricola, 2004, 61, 422-426.	0.6	6

#	Article	IF	CITATIONS
73	Levantamento da micoflora presente em grãos ardidos e sementes de milho. Summa Phytopathologica, 2010, 36, 257-259.	0.3	6
74	Molecular variability and genetic relationship among Brazilian strains of the sugarcane smut fungus. FEMS Microbiology Letters, 2016, 363, fnw277.	0.7	6
75	Relationship between forest residue management and micronutrient fertilization with eucalyptus rust severity in Eucalyptus grandis plantations. Forest Ecology and Management, 2020, 475, 118443.	1.4	6
76	Targeted Metabolic Profiles of the Leaves and Xylem Sap of Two Sugarcane Genotypes Infected with the Vascular Bacterial Pathogen Leifsonia xyli subsp. xyli. Metabolites, 2021, 11, 234.	1.3	6
77	Estudo da diversidade genética de Podosphaera xanthii através de marcadores AFLP e seqüências ITS. Summa Phytopathologica, 2011, 37, 94-100.	0.3	5
78	Relação entre resistência de linhagens tropicais de milho à podridão de espiga e ao acúmulo de fumonisinas provocados por Fusarium verticillioides. Summa Phytopathologica, 2015, 41, 144-148.	0.3	5
79	Occurrence of Podosphaera xanthii Race 2 on Cucumis melo in Brazil. Plant Disease, 2004, 88, 1161-1161.	0.7	4
80	Aggressiveness and physiological specialization of Septoria tritici Rob. isolates. Scientia Agricola, 2004, 61, 414-421.	0.6	4
81	Genetic mapping reveals complex architecture and candidate genes involved in common bean response to <i>Meloidogyne incognita</i> infection. Plant Genome, 2022, 15, e20161.	1.6	4
82	Análise da herança da resistência a Puccinia psidii em progênies de hÃbridos interespecÃficos de eucalipto avaliadas sob condições naturais de infecçţo. Tropical Plant Pathology, 2009, 34, .	0.8	3
83	Progeny evaluation for resistance toPhaeosphaerialeaf spot in tropical maize. Canadian Journal of Plant Pathology, 2011, 33, 49-53.	0.8	3
84	Histopathology of the Shoot Apex of Sugarcane Colonized by <i>Leifsonia xyli</i> subsp. <i>xyli</i> . Phytopathology, 2022, 112, 2062-2071.	1.1	3
85	Microscopic analysis reveals potential mode of action of foliar-applied potassium silicate against powdery mildew development. European Journal of Plant Pathology, 2020, 157, 815-823.	0.8	2
86	Early detection of Neophysopella tropicalis in grapevine leaves and on spore traps by qPCR. Plant Pathology, 2021, 70, 358-366.	1.2	2
87	Aggressiveness between genetic groups I and II of isolates of Cercospora zeae-maydis. Scientia Agricola, 2006, 63, 547-551.	0.6	2
88	A bacterial type three secretion-based delivery system for functional characterization ofÂSporisorium scitamineumAplant immune suppressing effector proteins. Phytopathology, 2022, , .	1.1	2
89	Arabidopsis-Based Dual-Layered Biological Network Analysis Elucidates Fully Modulated Pathways Related to Sugarcane Resistance on Biotrophic Pathogen Infection. Frontiers in Plant Science, 2021, 12, 707904.	1.7	0