
Jeremy Brown

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5100785/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	â€~Long-COVID': a cross-sectional study of persisting symptoms, biomarker and imaging abnormalities following hospitalisation for COVID-19. Thorax, 2021, 76, 396-398.	2.7	636
2	Physical, cognitive, and mental health impacts of COVID-19 after hospitalisation (PHOSP-COVID): a UK multicentre, prospective cohort study. Lancet Respiratory Medicine,the, 2021, 9, 1275-1287.	5.2	394
3	Changes in the incidence, prevalence and mortality of bronchiectasis in the UK from 2004 to 2013: a population-based cohort study. European Respiratory Journal, 2016, 47, 186-193.	3.1	393
4	The <i>Streptococcuspneumoniae</i> Capsule Inhibits Complement Activity and Neutrophil Phagocytosis by Multiple Mechanisms. Infection and Immunity, 2010, 78, 704-715.	1.0	356
5	The classical pathway is the dominant complement pathway required for innate immunity to Streptococcus pneumoniae infection in mice. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 16969-16974.	3.3	334
6	A Streptococcus pneumoniae pathogenicity island encoding an ABC transporter involved in iron uptake and virulence. Molecular Microbiology, 2001, 40, 572-585.	1.2	259
7	Immunization with Components of Two Iron Uptake ABC Transporters Protects Mice against Systemic Streptococcus pneumoniae Infection. Infection and Immunity, 2001, 69, 6702-6706.	1.0	150
8	Signature-tagged and directed mutagenesis identify PABA synthetase as essential for Aspergillus fumigatus pathogenicity. Molecular Microbiology, 2002, 36, 1371-1380.	1.2	136
9	Iron acquisition by Gram-positive bacterial pathogens. Microbes and Infection, 2002, 4, 1149-1156.	1.0	123
10	Zinc uptake by Streptococcus pneumoniae depends on both AdcA and AdcAII and is essential for normal bacterial morphology and virulence. Molecular Microbiology, 2011, 82, 904-916.	1.2	122
11	Characterization of Pit, a Streptococcus pneumoniae Iron Uptake ABC Transporter. Infection and Immunity, 2002, 70, 4389-4398.	1.0	116
12	Towards a population-based threshold of protection for COVID-19 vaccines. Vaccine, 2022, 40, 306-315.	1.7	107
13	<i>Streptococcus pneumoniae</i> Resistance to Complement-Mediated Immunity Is Dependent on the Capsular Serotype. Infection and Immunity, 2010, 78, 716-725.	1.0	103
14	Impaired Opsonization with C3b and Phagocytosis of <i>Streptococcus pneumoniae</i> in Sera from Subjects with Defects in the Classical Complement Pathway. Infection and Immunity, 2008, 76, 3761-3770.	1.0	98
15	Serum Amyloid P Aids Complement-Mediated Immunity to Streptococcus pneumoniae. PLoS Pathogens, 2007, 3, e120.	2.1	87
16	Thoracic Empyema: A 12-Year Study from a UK Tertiary Cardiothoracic Referral Centre. PLoS ONE, 2012, 7, e30074.	1.1	86
17	Additive Inhibition of Complement Deposition by Pneumolysin and PspA Facilitates <i>Streptococcus pneumoniae</i> Septicemia. Journal of Immunology, 2005, 175, 1813-1819.	0.4	85
18	Protective Contributions against Invasive Streptococcus pneumoniae Pneumonia of Antibody and Th17-Cell Responses to Nasopharyngeal Colonisation. PLoS ONE, 2011, 6, e25558.	1.1	84

Jeremy Brown

#	Article	IF	CITATIONS
19	Streptococcus pneumoniae Capsular Serotype Invasiveness Correlates with the Degree of Factor H Binding and Opsonization with C3b/iC3b. Infection and Immunity, 2013, 81, 354-363.	1.0	83
20	TLR-Mediated Inflammatory Responses to <i>Streptococcus pneumoniae</i> Are Highly Dependent on Surface Expression of Bacterial Lipoproteins. Journal of Immunology, 2014, 193, 3736-3745.	0.4	77
21	Screening of <i>Streptococcus pneumoniae</i> ABC Transporter Mutants Demonstrates that LivJHMGF, a Branched-Chain Amino Acid ABC Transporter, Is Necessary for Disease Pathogenesis. Infection and Immunity, 2009, 77, 3412-3423.	1.0	76
22	Antibodies to the Iron Uptake ABC Transporter Lipoproteins PiaA and PiuA Promote Opsonophagocytosis of Streptococcus pneumoniae. Infection and Immunity, 2005, 73, 6852-6859.	1.0	73
23	Naturally Acquired Human Immunity to Pneumococcus Is Dependent on Antibody to Protein Antigens. PLoS Pathogens, 2017, 13, e1006137.	2.1	72
24	Mechanisms of Naturally Acquired Immunity to Streptococcus pneumoniae. Frontiers in Immunology, 2019, 10, 358.	2.2	69
25	Prophages and satellite prophages are widespread in Streptococcus and may play a role in pneumococcal pathogenesis. Nature Communications, 2019, 10, 4852.	5.8	64
26	The Effects of Methionine Acquisition and Synthesis on Streptococcus Pneumoniae Growth and Virulence. PLoS ONE, 2013, 8, e49638.	1.1	60
27	Bronchiectasis and the risk of cardiovascular disease: a population-based study. Thorax, 2017, 72, 161-166.	2.7	60
28	The heterogeneity of systemic inflammation in bronchiectasis. Respiratory Medicine, 2017, 127, 33-39.	1.3	58
29	Changes in Capsular Serotype Alter the Surface Exposure of Pneumococcal Adhesins and Impact Virulence. PLoS ONE, 2011, 6, e26587.	1.1	57
30	Regulation of Neutrophilic Inflammation by Proteinase-Activated Receptor 1 during Bacterial Pulmonary Infection. Journal of Immunology, 2015, 194, 6024-6034.	0.4	57
31	A Locus Contained within a Variable Region of Pneumococcal Pathogenicity Island 1 Contributes to Virulence in Mice. Infection and Immunity, 2004, 72, 1587-1593.	1.0	55
32	A Quorum-Sensing System That Regulates Streptococcus pneumoniae Biofilm Formation and Surface Polysaccharide Production. MSphere, 2017, 2, .	1.3	55
33	Maturation of <i>Streptococcus pneumoniae</i> lipoproteins by a type II signal peptidase is required for ABC transporter function and full virulence. Molecular Microbiology, 2008, 67, 541-557.	1.2	52
34	Priming innate immune responses to infection by cyclooxygenase inhibition kills antibiotic-susceptible and -resistant bacteria. Blood, 2010, 116, 2950-2959.	0.6	52
35	Enhanced inflammation in aged mice following infection with <i>Streptococcus pneumoniae</i> is associated with decreased IL-10 and augmented chemokine production. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2015, 308, L539-L549.	1.3	51
36	Pneumococcal lipoproteins involved in bacterial fitness, virulence, and immune evasion. FEBS Letters, 2016, 590, 3820-3839.	1.3	51

JEREMY BROWN

#	Article	IF	CITATIONS
37	Pleiotropic Effects of Cell Wall Amidase LytA on Streptococcus pneumoniae Sensitivity to the Host Immune Response. Infection and Immunity, 2015, 83, 591-603.	1.0	47
38	Microinvasion by Streptococcus pneumoniae induces epithelial innate immunity during colonisation at the human mucosal surface. Nature Communications, 2019, 10, 3060.	5.8	46
39	Biochemical Characterization of the Histidine Triad Protein PhtD as a Cell Surface Zinc-Binding Protein of Pneumococcus. Biochemistry, 2011, 50, 3551-3558.	1.2	43
40	The Effects of PspC on Complement-Mediated Immunity to <i>Streptococcus pneumoniae</i> Vary with Strain Background and Capsular Serotype. Infection and Immunity, 2010, 78, 283-292.	1.0	41
41	Effects of Deletion of the Streptococcus pneumoniae Lipoprotein Diacylglyceryl Transferase Gene lgt on ABC Transporter Function and on Growth In Vivo. PLoS ONE, 2012, 7, e41393.	1.1	40
42	Research priorities in bronchiectasis. Thorax, 2013, 68, 695-696.	2.7	39
43	A recombinant conjugated pneumococcal vaccine that protects against murine infections with a similar efficacy to Prevnar-13. Npj Vaccines, 2018, 3, 53.	2.9	39
44	Immunization with the iron uptake ABC transporter proteins PiaA and PiuA prevents respiratory infection with Streptococcus pneumoniae. Vaccine, 2006, 24, 5133-5139.	1.7	38
45	Roles of the Alternative Complement Pathway and C1q during Innate Immunity to <i>Streptococcus pyogenes</i> . Journal of Immunology, 2006, 176, 6112-6120.	0.4	38
46	Characterization of a New Mouse Model of Empyema and the Mechanisms of Pleural Invasion by <i>Streptococcus pneumoniae</i> . American Journal of Respiratory Cell and Molecular Biology, 2012, 46, 180-187.	1.4	38
47	Community-acquired pneumonia. Current Opinion in Pulmonary Medicine, 2015, 21, 212-218.	1.2	35
48	Exposure to welding fumes and lower airway infection with Streptococcus pneumoniae. Journal of Allergy and Clinical Immunology, 2016, 137, 527-534.e7.	1.5	33
49	Importance of Bacterial Replication and Alveolar Macrophage-Independent Clearance Mechanisms during Early Lung Infection with Streptococcus pneumoniae. Infection and Immunity, 2015, 83, 1181-1189.	1.0	31
50	Infection with Conditionally Virulent Streptococcus pneumoniae Δ <i>pab</i> Strains Induces Antibody to Conserved Protein Antigens but Does Not Protect against Systemic Infection with Heterologous Strains. Infection and Immunity, 2011, 79, 4965-4976.	1.0	29
51	Protective Role of the Capsule and Impact of Serotype 4 Switching on Streptococcus mitis. Infection and Immunity, 2014, 82, 3790-3801.	1.0	29
52	PSGL-1 on Leukocytes is a Critical Component of the Host Immune Response against Invasive Pneumococcal Disease. PLoS Pathogens, 2016, 12, e1005500.	2.1	29
53	Geography and the aetiology of communityâ€acquired pneumonia. Respirology, 2009, 14, 1068-1071.	1.3	27
54	Effects of Streptococcus pneumoniae Strain Background on Complement Resistance. PLoS ONE, 2011, 6, e24581.	1.1	27

JEREMY BROWN

#	Article	IF	CITATIONS
55	Opportunistic bacterial, viral and fungal infections of the lung. Medicine, 2016, 44, 378-383.	0.2	25
56	Biomarkers and community-acquired pneumonia. Thorax, 2009, 64, 556-558.	2.7	23
57	Contributions of capsule, lipoproteins and duration of colonisation towards the protective immunity of prior Streptococcus pneumoniae nasopharyngeal colonisation. Vaccine, 2012, 30, 4453-4459.	1.7	23
58	Correlates and assessment of excess cardiovascular risk in bronchiectasis. European Respiratory Journal, 2017, 50, 1701127.	3.1	23
59	A Novel, Multiple-Antigen Pneumococcal Vaccine Protects against Lethal <i>Streptococcus pneumoniae</i> Challenge. Infection and Immunity, 2019, 87, .	1.0	21
60	Human pleural fluid is a potent growth medium for Streptococcus pneumoniae. PLoS ONE, 2017, 12, e0188833.	1.1	17
61	Preclinical Development of Virulence-attenuated <i>Streptococcus pneumoniae</i> Strains Able to Enhance Protective Immunity against Pneumococcal Infection. American Journal of Respiratory and Critical Care Medicine, 2021, 203, 1037-1041.	2.5	16
62	Targeting coagulation activation in severe COVID-19 pneumonia: lessons from bacterial pneumonia and sepsis. European Respiratory Review, 2020, 29, 200240.	3.0	16
63	Invasive pulmonary aspergillosis. Expert Review of Anti-Infective Therapy, 2005, 3, 613-627.	2.0	15
64	Impaired C3b/iC3b deposition on Streptococcus pneumoniae in serum from patients with systemic lupus erythematosus. Rheumatology, 2009, 48, 1498-1501.	0.9	14
65	Adult pneumococcal vaccination. Current Opinion in Pulmonary Medicine, 2017, 23, 225-230.	1.2	14
66	Lack of cross-protection against invasive pneumonia caused by heterologous strains following murine Streptococcus pneumoniae nasopharyngeal colonisation despite whole cell ELISAs showing significant cross-reactive IgG. Vaccine, 2013, 31, 2328-2332.	1.7	13
67	Streptococcus pneumoniae Lipoproteins and ABC Transporters. , 2015, , 181-206.		13
68	phgABC , a Three-Gene Operon Required for Growth of Streptococcus pneumoniae in Hyperosmotic Medium and In Vivo. Infection and Immunity, 2004, 72, 4579-4588.	1.0	12
69	Oral biofilms, periodontitis and pulmonary infections. Oral Diseases, 2007, 13, 513-514.	1.5	12
70	ICAM-1 and ICAM-2 Are Differentially Expressed and Up-Regulated on Inflamed Pulmonary Epithelium, but Neither ICAM-2 nor LFA-1: ICAM-1 Are Required for Neutrophil Migration Into the Airways In Vivo. Frontiers in Immunology, 2021, 12, 691957.	2.2	11
71	Relative Contributions of Extracellular and Internalized Bacteria to Early Macrophage Proinflammatory Responses to Streptococcus pneumoniae. MBio, 2019, 10, .	1.8	10
72	Bacterial Infection Elicits Heat Shock Protein 72 Release from Pleural Mesothelial Cells. PLoS ONE, 2013, 8, e63873.	1.1	10

#	Article	IF	CITATIONS
73	Using a prime and pull approach, lentivector vaccines expressing Ag85A induce immunogenicity but fail to induce protection against <i><scp>M</scp>ycobacterium bovis</i> bacillus Calmette–Guérin challenge in mice. Immunology, 2015, 146, 264-270.	2.0	8
74	Immunogenicity and mechanisms of action of PnuBioVax, a multi-antigen serotype-independent prophylactic vaccine against infection with Streptococcus pneumoniae. Vaccine, 2018, 36, 4255-4264.	1.7	8
75	Deletion of the Zinc Transporter Lipoprotein AdcAll Causes Hyperencapsulation of Streptococcus pneumoniae Associated with Distinct Alleles of the Type I Restriction-Modification System. MBio, 2020, 11, .	1.8	8
76	<i>In Vivo</i> Relationship between the Nano-Biomechanical Properties of Streptococcal Polysaccharide Capsules and Virulence Phenotype. ACS Nano, 2020, 14, 1070-1083.	7.3	7
77	C3b/iC3b Deposition on Streptococcus pneumoniae Is Not Affected by HIV Infection. PLoS ONE, 2010, 5, e8902.	1.1	6
78	Streptococcus pneumoniae potently induces cell death in mesothelial cells. PLoS ONE, 2018, 13, e0201530.	1.1	6
79	The Influence of B Cell Depletion Therapy on Naturally Acquired Immunity to Streptococcus pneumoniae. Frontiers in Immunology, 2020, 11, 611661.	2.2	6
80	Construction of a pneumolysin deficient mutant in streptococcus pneumoniae serotype 1 strain 519/43 and phenotypic characterisation. Microbial Pathogenesis, 2020, 141, 103999.	1.3	6
81	Streptococcus pneumoniae Interactions with Macrophages and Mechanisms of Immune Evasion. , 2015, , 401-422.		5
82	Invasive aspergillosis complicating treatment with tyrosine kinase inhibitors. BMJ Case Reports, 2019, 12, e226121.	0.2	5
83	Chronic cough in a patient with stable ulcerative colitis: a rare but important extraintestinal manifestation of inflammatory bowel disease. BMJ Case Reports, 2019, 12, bcr-2018-227066.	0.2	5
84	CSF Levels of Elongation Factor Tu Is Associated With Increased Mortality in Malawian Adults With Streptococcus pneumoniae Meningitis. Frontiers in Cellular and Infection Microbiology, 2020, 10, 603623.	1.8	5
85	The new first-line defense: the potential of nasopharyngeal colonization in vaccine strategies. Vaccine (Auckland, N Z), 2016, Volume 6, 47-57.	1.7	4
86	Improving Pulmonary Immunity to Bacterial Pathogens through Streptococcus pneumoniae Colonization of the Nasopharynx. American Journal of Respiratory and Critical Care Medicine, 2020, 201, 268-270.	2.5	4
87	BronchUK: protocol for an observational cohort study and biobank in bronchiectasis. ERJ Open Research, 2021, 7, 00775-2020.	1.1	4
88	Insights Into the Effects of Mucosal Epithelial and Innate Immune Dysfunction in Older People on Host Interactions With Streptococcus pneumoniae. Frontiers in Cellular and Infection Microbiology, 2021, 11, 651474.	1.8	4
89	Sequential Vaccination With Heterologous Acinetobacter baumannii Strains Induces Broadly Reactive Antibody Responses. Frontiers in Immunology, 2021, 12, 705533.	2.2	4
90	Effects of Expression of Streptococcus pneumoniae PspC on the Ability of Streptococcus mitis to Evade Complement-Mediated Immunity. Frontiers in Microbiology, 2021, 12, 773877.	1.5	4

JEREMY BROWN

#	Article	IF	CITATIONS
91	Corrected and Republished from: "A Novel, Multiple-Antigen Pneumococcal Vaccine Protects against Lethal <i>Streptococcus pneumoniae</i> Challengeâ€, Infection and Immunity, 2022, 90, e0084618a.	1.0	4
92	Impaired opsonization with complement and phagocytosis of Streptococcus pyogenes in sera from subjects with inherited C2 deficiency. Microbes and Infection, 2010, 12, 626-634.	1.0	3
93	What's new in respiratory infections and tuberculosis 2008–2010. Thorax, 2012, 67, 350-354.	2.7	3
94	Pneumococcal capsular serotypes and lung infection. Thorax, 2012, 67, 473-474.	2.7	3
95	Macrolides and pneumonia. Thorax, 2013, 68, 404-405.	2.7	3
96	Can animal models really teach us anything about pneumonia? Pro. European Respiratory Journal, 2020, 55, 1901539.	3.1	3
97	Strain Specific Variations in Acinetobacter baumannii Complement Sensitivity. Frontiers in Immunology, 0, 13, .	2.2	3
98	Pneumonia in the Non-HIV Immunocompromised Host. , 2008, , 365-378.		2
99	Signal Peptidase II. , 2013, , 258-261.		2
100	Targeting Inflammatory Responses to <i>Streptococcus pneumoniae</i> . European Journal of Molecular and Clinical Medicine, 2017, 2, 167.	0.5	2
101	Protective Effect of Nasal Colonisation with â^†cps/piaA and â^†cps/proABCStreptococcus pneumoniae Strains against Recolonisation and Invasive Infection. Vaccines, 2021, 9, 261.	2.1	2
102	Aspergillosis complicating a microwave ablation cavity. BMJ Case Reports, 2016, 2016, bcr2016216438.	0.2	2
103	A novel Streptococcus pneumoniae human challenge model demonstrates Treg lymphocyte recruitment to the infection site. Scientific Reports, 2022, 12, 3990.	1.6	2
104	Reply to "Cross-Protective Immunity against Heterologous Streptococcus pneumoniae― Infection and Immunity, 2012, 80, 1946-1946.	1.0	1
105	Predicting bacteraemia or rapid identification of the causative pathogen in community acquired pneumonia: where should the priority lie?. European Respiratory Journal, 2016, 48, 619-622.	3.1	1
106	Complete Genome Sequence of Streptococcus pneumoniae Strain BVJ1JL, a Serotype 1 Carriage Isolate from Malawi. Microbiology Resource Announcements, 2021, 10, e0071521.	0.3	1
107	Management of community-acquired pneumonia: essential tips for the physician on call. British Journal of Hospital Medicine (London, England: 2005), 2020, 81, 1-9.	0.2	1
108	Constructing Mutants in Serotype 1 Streptococcus pneumoniae strain 519/43. Journal of Visualized Experiments, 2020, , .	0.2	1

#	Article	IF	CITATIONS
109	Maintained partial protection against <i>Streptococcus pneumoniae</i> despite Bâ€cell depletion in mice vaccinated with a pneumococcal glycoconjugate vaccine. Clinical and Translational Immunology, 2022, 11, e1366.	1.7	1
110	A cough that doesn't fit the mould. Clinical Medicine, 2016, 16, 95-96.	0.8	0
111	Single nucleotide polymorphisms within the cps loci: another potential source of clinically important genetic variation for Streptococcus pneumoniae ?. Infection and Immunity, 2021, 89, e0037421.	1.0	0