
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5100600/publications.pdf Version: 2024-02-01

ASSUNTA REPTACCINI

#	Article	IF	CITATIONS
1	Phytoplasmas and Phytoplasma Diseases: A Severe Threat to Agriculture. American Journal of Plant Sciences, 2014, 05, 1763-1788.	0.8	268
2	Phytoplasmas: diversity, taxonomy, and epidemiology. Frontiers in Bioscience - Landmark, 2007, 12, 673.	3.0	236
3	Detection of Multiple Phytoplasmas in Perennial Fruit Trees with Decline Symptoms in Italy. Phytopathology, 1995, 85, 728.	2.2	221
4	Ribosomal protein gene-based phylogeny for finer differentiation and classification of phytoplasmas. International Journal of Systematic and Evolutionary Microbiology, 2007, 57, 2037-2051.	1.7	217
5	Phytoplasma: Ecology and Genomic Diversity. Phytopathology, 1998, 88, 1359-1366.	2.2	200
6	Molecular Detection of Diverse Mycoplasmalike Organisms (MLOs) Associated with Grapevine Yellows and Their Classification with Aster Yellows, X-Disease, and Elm Yellows MLOs. Phytopathology, 1993, 83, 1130.	2.2	134
7	Revision of the †Candidatus Phytoplasma' species description guidelines. International Journal of Systematic and Evolutionary Microbiology, 2022, 72, .	1.7	119
8	â€~Candidatus Phytoplasma japonicum', a new phytoplasma taxon associated with Japanese Hydrangea phyllody. International Journal of Systematic and Evolutionary Microbiology, 1999, 49, 1275-1285.	1.7	104
9	Global Status of Phytoplasma Diseases in Vegetable Crops. Frontiers in Microbiology, 2019, 10, 1349.	3.5	102
10	Genetic variability among flavescence dorée phytoplasmas from different origins in Italy and France. Molecular and Cellular Probes, 2002, 16, 197-208.	2.1	95
11	Molecular detection of the Australian grapevine yellows phytoplasma and comparison with grapevine yellows phytoplasmas from Italy. Australian Journal of Grape and Wine Research, 1995, 1, 25-31.	2.1	87
12	Identification and Epidemic Distribution of Two Flavescence Dorée—Related Phytoplasmas in Veneto (Italy). Plant Disease, 1999, 83, 925-930.	1.4	76
13	Potential Applications and Limitations of Electronic Nose Devices for Plant Disease Diagnosis. Sensors, 2017, 17, 2596.	3.8	76
14	Molecular Identification of a New Phytoplasma Associated with Alfalfa Witches'-Broom in Oman. Phytopathology, 2002, 92, 1038-1047.	2.2	67
15	Development and evaluation of different complex media for phytoplasma isolation and growth. Journal of Microbiological Methods, 2016, 127, 105-110.	1.6	67
16	Identification of phytoplasmas in eggs, nymphs and adults of Scaphoideus titanus Ball reared on healthy plants. Insect Molecular Biology, 1997, 6, 115-121.	2.0	66
17	The groEL gene as an additional marker for finer differentiation of â€~Candidatus Phytoplasma asteris'-related strains. Annals of Applied Biology, 2011, 159, 41-48.	2.5	66
18	Improved detection methods for fruit tree phytoplasmas. Plant Molecular Biology Reporter, 2001, 19, 169-179.	1.8	62

#	Article	IF	CITATIONS
19	'Candidatus Phytoplasma omanense', associated with witches'-broom of Cassia italica (Mill.) Spreng. in Oman. International Journal of Systematic and Evolutionary Microbiology, 2008, 58, 461-466.	1.7	58
20	Characterization of a Phytoplasma Associated with Frogskin Disease in Cassava. Plant Disease, 2009, 93, 1139-1145.	1.4	57
21	DNA Barcoding for Identification of †Candidatus Phytoplasmas' Using a Fragment of the Elongation Factor Tu Gene. PLoS ONE, 2012, 7, e52092.	2.5	57
22	Identification of genes expressed in response to phytoplasma infection in leaves of Prunus armeniaca by messenger RNA differential display. Gene, 2004, 332, 29-34.	2.2	51
23	Mixed Infection of Grapevines in Northern Italy by Phytoplasmas Including 16S rRNA RFLP Subgroup 16SrI-B Strains Previously Unreported in This Host. Plant Disease, 1996, 80, 418.	1.4	50
24	Phytoplasmas: An Update. , 2018, , 1-29.		47
25	Corn with Symptoms of Reddening: New Host of Stolbur Phytoplasma. Plant Disease, 2006, 90, 1313-1319.	1.4	45
26	Differentiation and classification of phytoplasmas in the pigeon pea witches'-broom group (16SrIX): an update based on multiple gene sequence analysis. International Journal of Systematic and Evolutionary Microbiology, 2012, 62, 2279-2285.	1.7	43
27	Herbal Drug Quality and Phytochemical Composition ofHypericum perforatumL. Affected by Ash Yellows Phytoplasma Infection. Journal of Agricultural and Food Chemistry, 2005, 53, 964-968.	5.2	42
28	Identification of Phytoplasmas Associated with Grapevine Yellows in Serbia. Journal of Phytopathology, 2004, 152, 575-579.	1.0	41
29	Phytoplasmas Associated with Grapevine Yellows Disease in Chile. Plant Disease, 2009, 93, 789-796.	1.4	41
30	â€~Candidatus Phytoplasma convolvuli', a new phytoplasma taxon associated with bindweed yellows in four European countries. International Journal of Systematic and Evolutionary Microbiology, 2012, 62, 2910-2915.	1.7	41
31	â€~Candidatus Phytoplasma balanitae' associated with witches' broom disease of Balanites triflora. International Journal of Systematic and Evolutionary Microbiology, 2013, 63, 636-640.	1.7	41
32	Identification of a 16SrII-E Phytoplasma in Calendula arvensis, Solanum nigrum, and Chenopodium spp Plant Disease, 2006, 90, 325-330.	1.4	37
33	Phytoplasma classification: taxonomy based on 16S ribosomal gene, is it enough?. Phytopathogenic Mollicutes, 2011, 1, 3.	0.1	37
34	Phytoplasmas Associated with Elm Yellows: Molecular Variability and Differentiation from Related Organisms. Plant Disease, 1999, 83, 1101-1104.	1.4	36
35	Molecular characterization of phytoplasmas in lilies with fasciation in the Czech Republic. FEMS Microbiology Letters, 2005, 249, 79-85.	1.8	36
36	Genetic diversity and vector transmission of phytoplasmas associated with sesame phyllody in Iran. Folia Microbiologica, 2017, 62, 99-109.	2.3	36

#	Article	IF	CITATIONS
37	Comparison of phytoplasmas infecting winter oilseed rape in the Czech Republic with Italian Brassica phytoplasmas and their relationship to the aster yellows group. Plant Pathology, 1998, 47, 317-324.	2.4	35
38	Detection of Chrysanthemum Yellows Mycoplasmalike Organism by Dot Hybridization and Southern Blot Analysis. Plant Disease, 1990, 74, 40.	1.4	35
39	Sensitive detection of mycoplasmalike organisms in field-collected and in vitro propagated plants of Brassica, Hydrangea and Chrysanthemum by polymerase chain reaction. Annals of Applied Biology, 1992, 121, 593-599.	2.5	34
40	<i>Pseudomonas syringae</i> pv. <i>actinidiae</i> detection in kiwifruit plant tissue and bleeding sap. Annals of Applied Biology, 2013, 162, 60-70.	2.5	34
41	Plasma activated water as resistance inducer against bacterial leaf spot of tomato. PLoS ONE, 2019, 14, e0217788.	2.5	34
42	Title is missing!. European Journal of Plant Pathology, 1997, 103, 251-254.	1.7	32
43	â€~ <i>Candidatus</i> Phytoplasma asteris' Strains Associated with Oil Palm Lethal Wilt in Colombia. Plant Disease, 2014, 98, 311-318.	1.4	32
44	Generation and Analysis of Draft Sequences of â€~Stolbur' Phytoplasma from Multiple Displacement Amplification Templates. Journal of Molecular Microbiology and Biotechnology, 2014, 24, 1-11.	1.0	32
45	Recommended rejection of the names Malacoplasma gen. nov., Mesomycoplasma gen. nov., Metamycoplasma gen. nov., Metamycoplasmataceae fam. nov., Mycoplasmoidaceae fam. nov., Mycoplasmoidales ord. nov., Mycoplasmoides gen. nov., Mycoplasmopsis gen. nov. [Gupta, Sawnani, Adeolu, Alnajar and Oren 2018] and all proposed species comb. nov. placed therein. International	1.7	32
46	Journal of Systematic and Evolutionary Microbiology, 2019, 69, 5650-5655. Review Article: Phytoplasma on ornamentals: Detection, diversity and management. Acta Phytopathologica Et Entomologica Hungarica, 2010, 45, 31-69.	0.2	31
47	Chromatographic Methods for Metabolite Profiling of Virus- and Phytoplasma-Infected Plants of <i>Echinacea purpurea</i> . Journal of Agricultural and Food Chemistry, 2011, 59, 10425-10434.	5.2	31
48	Occurrence of Phytoplasmas Related to Stolbur and to â€Â~ <i>Candidatus</i> Phytoplasma <i>japonicum</i> ' in Woody Host Plants in China. Journal of Phytopathology, 2010, 158, 100-104.	1.0	30
49	Identification of Volatile Markers in Potato Brown Rot and Ring Rot by Combined GC-MS and PTR-MS Techniques: Study on in Vitro and in Vivo Samples. Journal of Agricultural and Food Chemistry, 2014, 62, 337-347.	5.2	28
50	Nested PCR and RFLP Analysis Based on the 16S rRNA Gene. Methods in Molecular Biology, 2013, 938, 159-171.	0.9	27
51	Multigene analysis for differentiation of aster yellows phytoplasmas infecting carrots in Serbia. Annals of Applied Biology, 2009, 154, 219-229.	2.5	26
52	Optimization and validation of a high-performance liquid chromatography method for the analysis of cardiac glycosides in Digitalis lanata. Journal of Chromatography A, 2009, 1216, 3260-3269.	3.7	26
53	VINE DECLINE IN KIWIFRUIT: CLIMATE CHANGE AND EFFECT ON WATERLOGGING AND PHYTOPHTHORA IN NORTH ITALY. Acta Horticulturae, 2015, , 93-97.	0.2	24
54	Molecular identification of diverse â€~ <i>Candidatus</i> Phytoplasma' species associated with grapevine decline in Iran. Journal of Phytopathology, 2017, 165, 407-413.	1.0	24

#	Article	IF	CITATIONS
55	Identification of phytoplasmas associated with a decline of European hackberry (Celtis australis). Annals of Applied Biology, 1996, 128, 245-253.	2.5	23
56	Correlation of bois noir disease with nettle and vector abundance in northern Italy vineyards. Journal of Pest Science, 2012, 85, 23-28.	3.7	23
57	The EASIN Editorial Board: quality assurance, exchange and sharing of alien species information in Europe. Management of Biological Invasions, 2016, 7, 321-328.	1.2	23
58	Differentiation of â€~ <i>Candidatus</i> Phytoplasma cynodontis' Based on 16S rRNA and <i>groEL</i> Genes and Identification of a New Subgroup, 16SrXIV-C. Plant Disease, 2015, 99, 1578-1583.	1.4	22
59	Grapevine Yellows Diseases and Their Phytoplasma Agents. SpringerBriefs in Agriculture, 2017, , .	0.9	22
60	Variability and functional role of chromosomal sequences in 16SrI-B subgroup phytoplasmas including aster yellows and related strains. Journal of Applied Microbiology, 2003, 94, 103-110.	3.1	21
61	Comparative transcriptome analysis of Ziziphus jujuba infected by jujube witches' broom phytoplasmas. Scientia Horticulturae, 2017, 226, 50-58.	3.6	21
62	Multilocus Genetic Characterization of Phytoplasmas. , 2019, , 161-200.		21
63	Conventional and novel approaches for managing "flavescence dorée―in grapevine: knowledge gaps and future prospects. Plant Pathology, 2019, 68, 3-17.	2.4	21
64	Plasma activated water triggers plant defence responses. Scientific Reports, 2020, 10, 19211.	3.3	21
65	Grapevine yellows in Northern Italy: molecular identification of Flavescence dorée phytoplasma strains and of Bois Noir phytoplasmas. Journal of Applied Microbiology, 2007, 103, 2325-2330.	3.1	20
66	An oligonucleotide microarray-based assay for identification of phytoplasma 16S ribosomal groups. Plant Pathology, 2007, 56, 332-336.	2.4	20
67	Molecular Diversity of Phytoplasmas Associated with Grapevine Yellows Disease in North-Eastern Italy. Phytopathology, 2018, 108, 206-214.	2.2	20
68	Plants and Phytoplasmas: When Bacteria Modify Plants. Plants, 2022, 11, 1425.	3.5	20
69	Association of phytoplasmas and viruses with malformed clovers. Folia Microbiologica, 2004, 49, 617-624.	2.3	19
70	Identification of a phytoplasma associated with pomegranate little leaf disease in Iran. Crop Protection, 2016, 87, 50-54.	2.1	19
71	Xylella fastidiosa and olive quick decline syndrome (CoDiRO) in Salento (southern Italy): a chemometric 1H NMR-based preliminary study on Ogliarola salentina and Cellina di Nardò cultivars. Chemical and Biological Technologies in Agriculture, 2017, 4, .	4.6	19
72	First Report of Pear Decline Phytoplasmas on Pear in Serbia. Plant Disease, 2005, 89, 774-774.	1.4	19

#	Article	IF	CITATIONS
73	Genetic diversity of Czech â€~Candidatus Phytoplasma mali' strains based on multilocus gene analyses. European Journal of Plant Pathology, 2013, 136, 675-688.	1.7	18
74	Population genetic analysis reveals a low level of genetic diversity of â€~Candidatus Phytoplasma aurantifolia' causing witches' broom disease in lime. SpringerPlus, 2016, 5, 1701.	1.2	18
75	Occurrence and Characterization of a 16Sr <scp>II</scp> â€Ð Subgroup Phytoplasma Associated with Parsley Witches' Broom Disease in Iran. Journal of Phytopathology, 2016, 164, 996-1002.	1.0	18
76	In Vitro Micropropagation for Maintenance of Mycoplasma-like Organisms in Infected Plant Tissues. Hortscience: A Publication of the American Society for Hortcultural Science, 1992, 27, 1041-1043.	1.0	18
77	Detection and Identification of Phytoplasmas in Pomegranate Trees with Yellows Symptoms. Journal of Phytopathology, 2016, 164, 136-140.	1.0	17
78	Molecular and biological characterization of phytoplasmas from coconut palms affected by the lethal yellowing disease in Africa. Microbiological Research, 2019, 223-225, 51-57.	5.3	17
79	Spreading of ESFY Phytoplasmas in Stone Fruit in Catalonia (Spain). Journal of Phytopathology, 2004, 152, 432-437.	1.0	16
80	PHYTOPLASMA INFECTION IN PEACH AND CHERRY IN ITALY. Acta Horticulturae, 2001, , 365-370.	0.2	16
81	MOLECULAR EVIDENCE FOR MIXED PHYTOPLASMA INFECTION IN LILY PLANTS. Acta Horticulturae, 2002, , 35-41.	0.2	15
82	PHYTOPLASMA DETECTION IN EMPOASCA DECEDENS AND EMPOASCA SPP. AND THEIR POSSIBLE ROLE AS VECTORS OF EUROPEAN STONE FRUIT YELLOWS (16SRX-B) PHYTOPLASMA. Acta Horticulturae, 2004, , 507-511.	0.2	15
83	First report of multiple inflorescence disease of Cirsium arvense and its association with a 16SrIII-B subgroup phytoplasma in Serbia. Plant Pathology, 2005, 54, 561-561.	2.4	15
84	Occurrence and identification of grapevine phytoplasmas in main viticultural regions of Turkey. Phytoparasitica, 2015, 43, 303-310.	1.2	15
85	Detection and seed transmission of Bermudagrass phytoplasma in maize in Turkey. Journal of Phytopathology, 2019, 167, 248-255.	1.0	15
86	The use of plasmaâ€activated water in viticulture: Induction of resistance and agronomic performance in greenhouse and open field. Plasma Processes and Polymers, 2021, 18, .	3.0	15
87	An up to date status of alfalfa witches' broom disease in Iran. Phytopathogenic Mollicutes, 2015, 5, 9.	0.1	15
88	MOLECULAR DETECTION OF PHYTOPLASMAS IN APPLE WITH RUBBERY WOOD SYMPTOMS. Acta Horticulturae, 1998, , 693-700.	0.2	14
89	A simple and rapid protocol of crude DNA extraction from apple trees for PCR and real-time PCR detection of †Candidatus Phytoplasma mali'. Journal of Virological Methods, 2009, 156, 96-101.	2.1	14
90	Identification and molecular characterization of the phytoplasma associated with peach rosette-like disease at the Canadian Clonal Genebank based on the 16S rRNA gene analysis. Canadian Journal of Plant Pathology, 2011, 33, 127-134.	1.4	14

#	Article	IF	CITATIONS
91	Molecular and biologic characterization of a phytoplasma associated with Brassica campestris phyllody disease in Punjab province, Pakistan. European Journal of Plant Pathology, 2017, 149, 117-125.	1.7	14
92	Fruit Crop Phytoplasmas. , 2018, , 153-190.		14
93	Characterization of 16SrII group phytoplasmas associated with alfalfa (Medicago sativa) witches' broom disease in diverse areas of Iran. Journal of Crop Protection, 2016, 5, 581-590.	0.5	14
94	Geographical Distribution of Bois Noir Phytoplasmas Infecting Grapevines in Croatia. Journal of Phytopathology, 2000, 148, 239-242.	1.0	13
95	Aetiology of Opuntia ficus-indica malformations and stunting disease. Annals of Applied Biology, 2006, 149, 317-325.	2.5	13
96	Co-operational PCR coupled with dot blot hybridization for detection and 16SrX grouping of phytoplasmas. Plant Pathology, 2007, 56, 677-682.	2.4	13
97	Detection and identification of the coconut lethal yellowing phytoplasma in weeds growing in coconut farms in CA´te d'Ivoire. Canadian Journal of Plant Pathology, 2016, 38, 164-173.	1.4	13
98	Grapevine Phytoplasmas. , 2018, , 123-151.		13
99	Phytoplasma Diseases in Ornamental Crops. , 2018, , 191-233.		13
100	Phytoplasma Transmission by Seed. , 2019, , 131-147.		13
101	PHYTOPLASMAS IN DECLINING CHERRY PLANTS. Acta Horticulturae, 2008, , 409-416.	0.2	12
102	General phytoplasma detection by a q-PCR method using mycoplasma primers. Molecular and Cellular Probes, 2017, 35, 1-7.	2.1	12
103	Draft Whole Genome Sequence Analyses on <i>Pseudomonas syringae</i> pv. <i>actinidiae</i> Hypersensitive Response Negative Strains Detected from Kiwifruit Bleeding Sap Samples. Phytopathology, 2018, 108, 552-560.	2.2	12
104	Detection and molecular characterization of a 16SrI-F phytoplasma in potato showing purple top disease in Ecuador. Australasian Plant Pathology, 2018, 47, 311-315.	1.0	12
105	Identification and transmission of phytoplasmas and their impact on essential oil composition in Aerva javanica. 3 Biotech, 2019, 9, 310.	2.2	12
106	Standard Detection Protocol: PCR and RFLP Analyses Based on 16S rRNA Gene. Methods in Molecular Biology, 2019, 1875, 83-95.	0.9	12
107	Multigene characterization of a new â€ [~] Candidatus Phytoplasma rubi'-related strain associated with blackberry witches' broom. International Journal of Systematic and Evolutionary Microbiology, 2016, 66, 1438-1446.	1.7	12
108	First report of a 16SrIlâ€D phytoplasma associated with <i>Calendula officinalis</i> phyllody in Iran. New Disease Reports, 2016, 34, 22-22.	0.8	12

#	Article	IF	CITATIONS
109	Presence of European stone fruit yellows (ESFY or 16SrX-B) phytoplasmas in apricots in Austria. Plant Pathology, 2001, 50, 130-135.	2.4	11
110	Involvement of phytoplasmas in a decline of Ulmus chenmoui in Central Italy. Forest Pathology, 2002, 32, 265-275.	1.1	11
111	Status of alfalfa witches' broom phytoplasma disease in Iran. Phytopathogenic Mollicutes, 2015, 5, S65.	0.1	11
112	Leafhoppers and cixiids in phytoplasma-infected carrot fields: Species composition and potential phytoplasma vectors. Pesticidi I Fitomedicina = Pesticides and Phytomedicine, 2010, 25, 311-318.	0.2	11
113	Phytoplasma detection and identification in declining pomegranate in Iran. Phytopathogenic Mollicutes, 2015, 5, 95.	0.1	11
114	TRANSMISSION BY PATCH GRAFTING OF ESFY PHYTOPLASMA TO APRICOT (PRUNUS ARMENIACA L) AND JAPANESE PLUM (PRUNUS SALICINA LINDL). Acta Horticulturae, 2001, , 339-344.	0.2	10
115	OLD AND NEW VIRUSES OF LILY IN ITALY. Acta Horticulturae, 2002, , 215-220.	0.2	10
116	Identification of <i>Graminella nigrifrons</i> as a potential vector for phytoplasmas affecting <i>Prunus</i> and <i>Pyrus</i> species in Canada. Canadian Journal of Plant Pathology, 2011, 33, 465-474.	1.4	10
117	cDNA-AFLP analysis of gene expression changes in apple trees induced by phytoplasma infection during compatible interaction. European Journal of Plant Pathology, 2012, 134, 117-130.	1.7	10
118	Genetic relatedness and recombination analysis of <i>Allorhizobium vitis</i> strains associated with grapevine crown gall outbreaks in Europe. Journal of Applied Microbiology, 2015, 119, 786-796.	3.1	10
119	Detection and differentiation of the coconut lethal yellowing phytoplasma in coconutâ€growing villages of Grandâ€Lahou, Côte d'Ivoire. Annals of Applied Biology, 2017, 170, 333-347.	2.5	10
120	Identification of Nedotepa curta Dmitriev as a potential vector of the Côte d'Ivoire lethal yellowing phytoplasma in coconut palms sole or in mixed infection with a â€̃Candidatus Phytoplasma asteris'-related strain. Crop Protection, 2018, 110, 48-56.	2.1	10
121	Citrus industry: Phytoplasma-associated diseases and related challenges for Asia, America and Africa. Crop Protection, 2022, 151, 105822.	2.1	10
122	First Report of â€~ <i>Candidatus</i> Phytoplasma asteris'-Related Strain Associated with Peach Rosette in Canada. Plant Disease, 2010, 94, 916-916.	1.4	10
123	First Report of an Elm Yellows Subgroup 16SrV-C Phytoplasma Infecting Grapevine in Serbia. Plant Disease, 2003, 87, 599-599.	1.4	10
124	Molecular Detection of Jujube Witches' Broom Phytoplasmas in Micropropagated Jujube Shoots. Hortscience: A Publication of the American Society for Hortcultural Science, 2000, 35, 1274-1275.	1.0	10
125	Preliminary study on some ornamental plant phytoplasma diseases in north of Iran. Phytopathogenic Mollicutes, 2015, 5, S67.	0.1	10
126	Molecular identification and phylogenetic analysis of phytoplasmas associated with alfalfa witches' broom diseases in the western areas of Iran. Phytopathogenic Mollicutes, 2016, 6, 16.	0.1	10

#	Article	IF	CITATIONS
127	Leek Proliferation: A New Phytoplasma Disease in the Czech Republic and Italy. European Journal of Plant Pathology, 1999, 105, 487-493.	1.7	9
128	Detection and identification of phytoplasmas associated with declining Liquidambar styraciflua trees in Colombia. Tropical Plant Pathology, 2017, 42, 352-361.	1.5	9
129	Detection and characterisation of phytoplasma strains associated with field bindweed witches' broom disease in Iran. Archives of Phytopathology and Plant Protection, 2018, 51, 803-813.	1.3	9
130	Identification, occurrence, incidence and transmission of phytoplasma associated with Petunia violacea witches' broom in Iran. Journal of Phytopathology, 2019, 167, 547-552.	1.0	9
131	"Flavescence dorée―impacts growth, productivity and ultrastructure of Vitis vinifera plants in Portuguese "Vinhos Verdes―region. Scientia Horticulturae, 2020, 261, 108742.	3.6	9
132	Simultaneous evaluation of â€~ <i>Candidatus</i> Phytoplasma' and â€~ <i>Candidatus</i> Liberibacter solanacearum' seed transmission in carrot. Phytopathogenic Mollicutes, 2019, 9, 141.	0.1	9
133	Containment of Phytoplasma-Associated Plant Diseases by Antibiotics and Other Antimicrobial Molecules. Antibiotics, 2021, 10, 1398.	3.7	9
134	Association of a â€~Candidatus Phytoplasma aurantifolia'-related strain with apricot showing European stone fruit yellows symptoms in Iran. 3 Biotech, 2019, 9, 65.	2.2	8
135	A new species of planthopper belonging to the genus Oecleus Stål, 1862 (Hemiptera: Fulgoroidea: Cixiidae) from coconut palm (Cocos nucifera L) in Jamaica . Zootaxa, 2019, 4712, 127-137.	0.5	8
136	DETECTION OF MYCOPLASMALIKE ORGANISMS (PHYTOPLASMAS) IN RUBUS BY NESTED POLYMERASE CHAIN REACTION (PCR) Acta Horticulturae, 1995, , 126-131.	0.2	8
137	IMPROVED DETECTION OF VIRUSES AND PHYTOPLASMAS IN FRUIT TREE TISSUE CULTURES. Acta Horticulturae, 2001, , 463-470.	0.2	8
138	Phytoplasma research between past and future: what directions?. Phytopathogenic Mollicutes, 2015, 5, S1.	0.1	8
139	Grassy shoot: The destructive disease of sugarcane. Phytopathogenic Mollicutes, 2020, 10, 10.	0.1	8
140	Identification and GroEl gene characterization of green petal phytoplasma infecting strawberry in Italy. Phytopathogenic Mollicutes, 2012, 2, 59.	0.1	8
141	PHYLLODY AND VIRESCENCE IN RANUNCULUS HYBRIDS. Acta Horticulturae, 1988, , 123-128.	0.2	7
142	IDENTIFICATION OF PHYTOPLASMAS INFECTING SOUR CHERRY IN HUNGARY. Acta Horticulturae, 2001, , 383-388.	0.2	7
143	Note: Molecular identification of â€~Candidatus phytoplasma asteris' inducing histological anomalies inSilene nicaeensis. Phytoparasitica, 2008, 36, 290-293.	1.2	7
144	Phytoplasma and virus diseases on tomato in Mauritius. Australasian Plant Pathology, 2013, 42, 659-665.	1.0	7

#	Article	IF	CITATIONS
145	Worldwide Distribution and Identification of Grapevine Yellows Diseases. SpringerBriefs in Agriculture, 2017, , 17-46.	0.9	7
146	Molecular and Serological Approaches in Detection of Phytoplasmas in Plants and Insects. , 2019, , 105-136.		7
147	Characterization of â€~ <i>Candidatus</i> Phytoplasma solani' associated with a maize leaf reddening disease in Turkey. Journal of Phytopathology, 2021, 169, 658-666.	1.0	7
148	First Report of Phytoplasmas in Grapevine in South Africa. Plant Disease, 2006, 90, 1360-1360.	1.4	7
149	A MOLECULAR SURVEY TO IDENTIFY PHYTOPLASMAS ASSOCIATED WITH APPLE TREES SHOWING DIFFERENT DISEASES SYMPTOMS. Acta Horticulturae, 2001, , 371-376.	0.2	7
150	PHYTOPLASMAS INFECTING FRUIT TREES IN SERBIA. Acta Horticulturae, 2008, , 351-358.	0.2	7
151	A rhabdovirus inducing vein yellowing in croton. Plant Pathology, 1992, 41, 79-82.	2.4	6
152	IDENTIFICATION OF PHYTOPLASMAS IN ALSTROEMERIA. Acta Horticulturae, 1996, , 312-319.	0.2	6
153	NESTED-PCR ASSAYS FOR DETECTION OF PHYTOPLASMAS IN STRAWBERRY. Acta Horticulturae, 1997, , 787-790.	0.2	6
154	ROLE OF DIFFERENT PHYTOPLASMAS IN INDUCING POINSETTIA BRANCHING. Acta Horticulturae, 2002, , 169-176.	0.2	6
155	DNA Bar-Coding for Phytoplasma Identification. Methods in Molecular Biology, 2013, 938, 301-317.	0.9	6
156	Phytoplasmas and Their Insect Vectors: Implications for Date Palm. , 2015, , 287-314.		6
157	Status of sesame phyllody and its control methods in Yazd, Iran. Phytopathogenic Mollicutes, 2015, 5, S119.	0.1	6
158	Evidence of association of a â€~Candidatus Phytoplasma cynodontis' with bermuda grass (Cynodon) Tj ETQ Uttar Pradesh, India. Crop Protection, 2015, 74, 138-144.	q0 0 0 rgt 2.1	3T /Overlock 10 6
159	Association of <i>Eriophyes dimocarpi</i> (Acari: Eriophyidae) with longan witches' broom disease in Vietnam. Archives of Phytopathology and Plant Protection, 2017, 50, 70-83.	1.3	6
160	Characterization of a 16SrII subgroup D phytoplasma strain associated with Calendula officinalis phyllody in Iran. 3 Biotech, 2018, 8, 295.	2.2	6
161	Surveys reveal a complex association of phytoplasmas and viruses with the blueberry stunt disease on Canadian blueberry farms. Annals of Applied Biology, 2019, 174, 142-152.	2.5	6
162	Occurrence and identification of a phytoplasma associated with Pinus brutia witches' broom disease in Isfahan, Iran. Australasian Plant Pathology, 2020, 49, 655-660.	1.0	6

#	Article	IF	CITATIONS
163	Phytoplasma presence in carrot seedlings. Australasian Plant Disease Notes, 2020, 15, 1.	0.7	6
164	Title is missing!. Anales Del Jardin Botanico De Madrid, 2005, 62, .	0.4	6
165	First report of â€~ <i>Candidatus</i> Phytoplasma asteris' (16Srl group) causing stunt of tomato in Cuba. New Disease Reports, 2014, 30, 10-10.	0.8	6
166	First report of a â€~ <i>Candidatus</i> Phytoplasma phoeniciumâ€~â€related strain (16SrlXâ€I) associated with yellowing of <i>Onobrychis viciifolia</i> in Iran. New Disease Reports, 2016, 34, 30-30.	0.8	6
167	Incidence, distribution, economic importance of alfalfa witches' broom disease in Sistan-Baluchestan (Iran) and characterization of associated phytoplasmas. Phytopathogenic Mollicutes, 2015, 5, 84.	0.1	6
168	Occurrence of a â€~ <i>Candidatus</i> Phytoplasma omanense'-related strain in bindweed witches' broom disease in Iran. Phytopathogenic Mollicutes, 2016, 6, 87.	0.1	6
169	DETECTION OF MYCOPLASMALIKE ORGANISMS IN GLADIOLUS USING MICROSCOPY AND DNA-PROBES. Acta Horticulturae, 1992, , 703-708.	0.2	5
170	SUSCEPTIBILITY TO PHYTOPLASMA INFECTION OF THREE PEAR VARIETIES GRAFTED ON DIFFERENT ROOTSTOCKS. Acta Horticulturae, 1998, , 673-680.	0.2	5
171	MICROPROPAGATION AND ESTABLISHMENT OF MITE-BORNE VIRUS-FREE GARLIC (ALLIUM SATIVUM). Acta Horticulturae, 2004, , 201-206.	0.2	5
172	New findings on phytoplasmas-affected Auchenorrhyncha populations in Sardinian vineyards. , 2006, , .		5
173	Effects of â€~Candidatus Phytoplasma asteris' on the Volatile Chemical Content and Composition of Grindelia robusta Nutt Journal of Phytopathology, 2011, 159, 124-126.	1.0	5
174	SEVERE DISEASES INDUCED BY VIRUSES AND PHYTOPLASMAS IN HYDRANGEA IN ITALY. Acta Horticulturae, 2015, , 105-111.	0.2	5
175	First detection of " <i>Candidatus</i> Phytoplasma asteris――and " <i>Candidatus</i> Phytoplasma solaniâ€â€related strains in fig trees. Journal of Phytopathology, 2020, 168, 63-71.	1.0	5
176	Occurrence of â€ [~] Candidatus Phytoplasma omanense'-related strains and other phytoplasmas in Sophora alopecuroides plants showing dwarfing and yellowing. Australasian Plant Pathology, 2020, 49, 403-411.	1.0	5
177	Identification of â€ ⁻ Candidatus Phytoplasma' species in "huanglongbing―infected citrus orchards in the Caribbean. European Journal of Plant Pathology, 2021, 160, 185-198.	1.7	5
178	Q-Bank Phytoplasma: A DNA Barcoding Tool for Phytoplasma Identification. Methods in Molecular Biology, 2015, 1302, 123-135.	0.9	5
179	ARE PHYTOPLASMAS INVOLVED IN A SEVERE PEACH DECLINE?. Acta Horticulturae, 2006, , 421-427.	0.2	5
180	Transmission of 16SrIII-J phytoplasma by <i>Paratanus exitiosus</i> (Beamer) leafhopper in grapevine. Phytopathogenic Mollicutes, 2015, 5, S43.	0.1	5

#	Article	IF	CITATIONS
181	Viral Aggregates Induced by a Distinctive Strain of Strawberry Latent Ringspot Virus from Grapevine. Journal of Phytopathology, 1982, 104, 304-308.	1.0	4
182	First report of Spartium witches' broom disease in Spain. Plant Pathology, 2002, 51, 807-807.	2.4	4
183	PHYTOPLASMA INFECTION IN ASCLEPIAS PHYSOCARPA. Acta Horticulturae, 2006, , 349-354.	0.2	4
184	First report of â€~ <i>Candidatus</i> Phytoplasma fraxini' (group 16SrVII phytoplasma) associated with a peach disease in Canada. Plant Pathology, 2010, 59, 1162-1162.	2.4	4
185	RECENT FINDINGS OF VIRUSES INFECTING RANUNCULUS HYBRIDS IN LIGURIA (ITALY). Acta Horticulturae, 2011, , 113-117.	0.2	4
186	New phytoplasma subgroup identified from Arecaceae palm species in Grand-Lahou, Côte d'Ivoire. Canadian Journal of Plant Pathology, 2017, 39, 297-306.	1.4	4
187	Integrated Management of Phytoplasma Diseases. , 2019, , 237-258.		4
188	Phytoplasma Elimination from Perennial Horticultural Crops. , 2019, , 185-206.		4
189	Update and New Epidemiological Aspects about Grapevine Yellows in Chile. Pathogens, 2020, 9, 933.	2.8	4
190	PCR INDEXING OF PHYTOPLASMA-INFECTED MICROPROPAGATED PERIWINKLE TREATED WITH PAP-II, A RIBOSOME INACTIVATING PROTEIN FROM PHYTOLACCA AMERICANA LEAVES. Acta Horticulturae, 2000, , 113-120.	0.2	4
191	THREE YEARS OF MOLECULAR MONITORING OF PHYTOPLASMA SPREADING IN A PLUM GROWING AREA IN ITALY. Acta Horticulturae, 2004, , 501-506.	0.2	4
192	MOLECULAR DETECTION OF 'CANDIDATUS PHYTOPLASMA ZIZIPHAE' IN DIFFERENT JUJUBE CULTIVARS. Acta Horticulturae, 2008, , 207-210.	0.2	4
193	Molecular detection and characterisation of phytoplasma in Trigonella foenum-graecum and identification of potential insect vectors in Punjab, Pakistan. Pakistan Journal of Botany, 2020, 52, .	0.5	4
194	Transmission of 16SrIII-J phytoplasma by <i>Bergallia valdiviana</i> Berg 1881 leafhopper. Phytopathogenic Mollicutes, 2015, 5, S47.	0.1	4
195	Identification of phytoplasmas in mango and pomegranate fruits in Guadeloupe. Phytopathogenic Mollicutes, 2018, 8, 89.	0.1	4
196	The phytoplasma classification between â€~Candidatus species' provisional status and ribosomal grouping system. Phytopathogenic Mollicutes, 2019, 9, 1.	0.1	4
197	â€~Candidatus Phytoplasma' species detection in coconuts in Cuba. Phytopathogenic Mollicutes, 2019, 9, 191.	0.1	4
198	Detection and identification of phytoplasmas associated with longan witches' broom in Vietnam. Phytopathogenic Mollicutes, 2012, 2, 23.	0.1	4

#	Article	IF	CITATIONS
199	Molecular Variability and Host Distribution of †Candidatus Phytoplasma solani' Strains from Different Geographic Origins. Microorganisms, 2021, 9, 2530.	3.6	4
200	BYMV-FREE CLONES OF EIGHT GLADIOLUS CULTIVARS OBTAINED BY MERISTEM-TIP CULTURE. Acta Horticulturae, 1986, , 299-308.	0.2	3
201	ELECTRON MICROSCOPY OF VIRESCENT GLOXINIA PLANTS. Acta Horticulturae, 1990, , 509-516.	0.2	3
202	PHYTOPLASMAS, ACERIA BEZZII AND DROUGHT IN DECLINING EUROPEAN HACKBERRY (CELTIS AUSTRALIS L.). Acta Horticulturae, 1999, , 87-92.	0.2	3
203	TOBACCO STREAK VIRUS INFECTING BUXUS SEMPERVIRENS. Acta Horticulturae, 2006, , 229-234.	0.2	3
204	Micropropagation and Maintenance of Phytoplasmas in Tissue Culture. Methods in Molecular Biology, 2013, 938, 33-39.	0.9	3
205	FIRST REPORT OF PHYTOPLASMAS ASSOCIATED WITH ERYSIMUM LINIFOLIUM STUNTING. Acta Horticulturae, 2015, , 117-121.	0.2	3
206	PCR-based diagnostic methods for 'Candidatus Liberibacter solanacearum' - Review. Plant Protection Science, 2019, 55, 229-242.	1.4	3
207	Detection of 16SrVI and 16SrIX phytoplasma groups in pot marigold and tickseed plants in northeastern Iran. Folia Microbiologica, 2020, 65, 697-703.	2.3	3
208	Molecular diversity of phytoplasmas associated with eggplant phyllody disease in Iran. European Journal of Plant Pathology, 2021, 161, 195-205.	1.7	3
209	Detection and identification of a 16SrIIIâ€J subgroup phytoplasma associated with faba bean in Peru. Journal of Phytopathology, 2021, 169, 203-208.	1.0	3
210	IDENTIFICATION BY MOLECULAR TECHNIQUES OF PHYTOPLASMAS ASSOCIATED WITH APRICOT CHLOROTIC LEAFROLL IN ITALY. Acta Horticulturae, 1999, , 779-782.	0.2	3
211	IDENTIFICATION OF PHYTOPLASMAS ON POMACEOUS FRUIT TREE SPECIES IN HUNGARY. Acta Horticulturae, 2004, , 443-448.	0.2	3
212	IMPROVED MOLECULAR METHODS FOR DETECTION OF EUROPEAN STONE FRUIT YELLOWS (ESFY) PHYTOPLASMAS FROM IN VITRO SHOOTS OF FRUIT TREES. Acta Horticulturae, 2004, , 495-500.	0.2	3
213	COMPARISON OF DIFFERENT DETECTION SYSTEMS FOR APPLE PROLIFERATION PHYTOPLASMAS IN TRENTINO (NORTH ITALY). Acta Horticulturae, 2008, , 453-458.	0.2	3
214	First report of the identification of a â€~ <i>Candidatus</i> Phytoplasma pruniâ€~â€related strain in <i>Trillium</i> species in Canada. New Disease Reports, 2016, 34, 19-19.	0.8	3
215	Molecular characterization of a new phytoplasma associated with Helianthus annuus phyllody in Iran. Phytopathogenic Mollicutes, 2017, 7, 81.	0.1	3
216	Molecular differentiation of 16SrIX-I phytoplasmas detected in <i>Onobrychis viciifolia</i> leaf yellowing in Iran from phytoplasmas in 16SrIX-J subgroup. Phytopathogenic Mollicutes, 2018, 8, 24.	0.1	3

#	Article	IF	CITATIONS
217	Phytoplasmas infecting greenhouse cucumber in Iran. Phytopathogenic Mollicutes, 2019, 9, 31.	0.1	3
218	â€~Candidatus Phytoplasma' and â€~Candidatus Liberibacter' species detection in citrus. Phytopathogenic Mollicutes, 2019, 9, 187.	0.1	3
219	Occurrence of single and mixed infection of Spiroplasma citri and phytoplasmas in sesame plants in Iran. Australasian Plant Pathology, 2022, 51, 13-26.	1.0	3
220	Preliminary evaluation of antimicrobial activity of some chemicals on in vitro apple shoots infected by 'Candidatus Phytoplasma mali'. Communications in Agricultural and Applied Biological Sciences, 2008, 73, 335-41.	0.0	3
221	THE OCCURRENCE OF STRAWBERRY VIRUSES AND PHYTOPLASMAS IN THE CZECH REPUBLIC. Acta Horticulturae, 2001, , 81-86.	0.2	2
222	IDENTIFICATION AND MOLECULAR CHARACTERIZATION OF MULTIPLE PHYTOPLASMA INFECTION IN SPARTIUM JUNCEUM AND CYTISUS SCOPARIUS. Acta Horticulturae, 2015, , 113-116.	0.2	2
223	Rapid screening for phytoplasma presence in flower crops using <i>tuf</i> gene barcode. Acta Horticulturae, 2018, , 63-68.	0.2	2
224	A new species of planthopper in the genus Agoo Bahder & Bartlett (Hemiptera: Fulgoroidea: Derbidae) from coconut palm (Cocos nucifera L.) in Jamaica . Zootaxa, 2020, 4853, 254-264.	0.5	2
225	Molecular detection of phytoplasmas in potato psyllids in ecuador. Phytopathogenic Mollicutes, 2021, 11, 51-58.	0.1	2
226	Phytoplasma Cultivation. , 2019, , 89-104.		2
227	PHYTOPLASMA INFECTION IN STRAWBERRY CULTIVATION IN SOUTHERN ITALY. Acta Horticulturae, 2002, , 639-642.	0.2	2
228	Characterization of a â€~ <i>Candidatus</i> Phytoplasma asteris' strains associated with periwinkle virescence in Southern Italy. Phytopathogenic Mollicutes, 2014, 4, 53.	0.1	2
229	Phytoplasma identification in iberis exhibiting stunting and witches' broom symptoms. Phytopathogenic Mollicutes, 2015, 5, S85.	0.1	2
230	<i>Cyperus rotundus</i> L. a new host species for â€~ <i>Candidatus</i> Phytoplasma aurantifolia' - related phytoplasmas in Cuba. Phytopathogenic Mollicutes, 2015, 5, 42.	0.1	2
231	Molecular detection and identification of 16SrII group and aster yellows phytoplasmas associated with longan witches' broom syndrome in Vietnam. Phytopathogenic Mollicutes, 2016, 6, 10.	0.1	2
232	New host plants and distribution areas of â€~ <i>Candidatus</i> Phytoplasma omanense'-related strains in Iran. Phytopathogenic Mollicutes, 2019, 9, 13.	0.1	2
233	Use of 12p and 36p genes as molecular markers in support of subgroup identification of two 16SrXIII phytoplasmas associated with strawberry phyllody in Chile. Phytopathogenic Mollicutes, 2019, 9, 89.	0.1	2
234	Outlook on relevant phytoplasma diseases in Europe. Phytopathogenic Mollicutes, 2013, 3, 9.	0.1	2

#	Article	IF	CITATIONS
235	Characterization on six genes of â€~ <i>Candidatus</i> Phytoplasma asteris'-related phytoplasmas infecting cyclamen. Phytopathogenic Mollicutes, 2013, 3, 72.	0.1	2
236	Molecular identification and characterization of phytoplasmas in insect vectors of chickpea phyllody disease in Punjab, Pakistan. Phytopathogenic Mollicutes, 2019, 9, 105.	0.1	2
237	Does salicylic acid alleviate the impacts on growth, development and productivity of "flavescence dorée―in Portuguese "Vinhos Verdes―grapevines?. Phytopathogenic Mollicutes, 2019, 9, 167.	0.1	2
238	Methyl jasmonate triggers metabolic responses and gene expression on <i>Vitis vinifera</i> cultivar Loureiro infected with "flavescence dorée― Phytopathogenic Mollicutes, 2019, 9, 165.	0.1	2
239	Identification of a 16SrIXâ€B phytoplasma strain associated with <i>Daphne mucronata</i> phyllody in Iran. Forest Pathology, 2021, 51, e12703.	1.1	2
240	Diverse phytoplasmas associated with maize bushy stunt disease in Peru. European Journal of Plant Pathology, 2022, 163, 223-235.	1.7	2
241	Microarrays for Universal Detection and Identification of Phytoplasmas. Methods in Molecular Biology, 2013, 938, 223-232.	0.9	1
242	Phytoplasmas – Dangerous and Intriguing Bacteria. SpringerBriefs in Agriculture, 2017, , 1-15.	0.9	1
243	Plant Pathogens, Minor (Phytoplasmas) â~†. , 2018, , .		1
244	Transovarial Transmission in Insect Vectors. , 2019, , 115-130.		1
245	Phytoplasma cultivation: State of the art. Phytopathogenic Mollicutes, 2021, 11, 3-8.	0.1	1
246	Multilocus typing for characterization of â€~ <i>Candidatus</i> Phytoplasma asteris'-related strains in several ornamental species in Italy. Acta Horticulturae, 2018, , 55-62.	0.2	1
247	Multigene characterization of phytoplasmas infecting jujube and paulownia in China. Phytopathogenic Mollicutes, 2016, 6, 93.	0.1	1
248	Detection of phytoplasmas in <i>Passiflora edulis</i> in Guadeloupe. Phytopathogenic Mollicutes, 2018, 8, 8.	0.1	1
249	Plasma activated water as a possible sustainable strategy towards grapevine yellows disease management. Phytopathogenic Mollicutes, 2019, 9, 163.	0.1	1
250	Phytoplasma detection in date palm plant tissues by colony isolationfollowed by molecular analyses. Phytopathogenic Mollicutes, 2019, 9, 263.	0.1	1
251	Preliminary results on susceptibility to bacterial canker of <i>Actinidia</i> spp. accessions. Acta Horticulturae, 2019, , 115-120.	0.2	1
252	Molecular characterization of phytoplasmas infecting neem trees in India. Phytopathogenic Mollicutes, 2020, 10, 158-165.	0.1	1

#	Article	IF	CITATIONS
253	Identification of phytoplasmas and Auchenorryncha in Tunisian vineyards. Phytopathogenic Mollicutes, 2020, 10, 25.	0.1	1
254	First report of a 16SrII-D phytoplasma associated with phyllody in Heliopsis helianthoides. Australasian Plant Pathology, 2022, 51, 117-122.	1.0	1
255	Survey for â€~Candidatus Liberibacter' and â€~Candidatus Phytoplasma' in Citrus in Chile. Pathogens, 202 11, 48.	22 _{,2.8}	1
256	European primary datasets of alien bacteria and viruses. Scientific Data, 2022, 9, .	5.3	1
257	PRELIMINARY RESULTS ON IDENTIFICATION OF MOLECULES INDUCED IN APRICOT TREES AFTER ESFY PHYTOPLASMA INOCULATION BY GRAFTING. Acta Horticulturae, 2006, , 455-458.	0.2	0
258	Ten years journey of phytopathogenic mollicutes. Phytopathogenic Mollicutes, 2021, 11, 1-2.	0.1	0
259	Tropicsafe project: Detection and management of lethal yellowing and grapevine yellows diseases in partner countries. Phytopathogenic Mollicutes, 2021, 11, 9-14.	0.1	0
260	A chrysanthemum decline associated with phytoplasma presence in Italy. Phytopathogenic Mollicutes, 2021, 11, 15-22.	0.1	0
261	PHYTOPLASMA SUB-GROUPS INFECTING INSECTS COLLECTED IN DAMAGED STRAWBERRY FIELDS. Acta Horticulturae, 2006, , 161-166.	0.2	0
262	Small RNA profiling of aster yellows infected <i>Catharanthus roseus</i> plants. Phytopathogenic Mollicutes, 2019, 9, 131.	0.1	0
263	Phytoplasma cultivation: lights and shadows. Phytopathogenic Mollicutes, 2019, 9, 95.	0.1	0
264	Host Metabolic Interaction and Perspectives in Phytoplasma Research. , 2019, , 201-226.		0
265	Phytoplasmas detected in insects and spontaneous vegetation near vineyards with yellows diseases in Italy. Phytopathogenic Mollicutes, 2019, 9, 55.	0.1	0
266	A severe case of pear decline disease. Phytopathogenic Mollicutes, 2019, 9, 252.	0.1	0
267	Potential insect vectors and alternative host plants of phytoplasmas inthe Fynbos and Succulent Karoo biomes in South Africa. Phytopathogenic Mollicutes, 2019, 9, 197.	0.1	0
268	Preliminary evaluation of the use of an antiserum obtained from phytoplasma culture. Phytopathogenic Mollicutes, 2019, 9, 201.	0.1	0
269	Identification of 16SrXI phytoplasmas in sugarcane and alternative hostplants in Karnataka, India. Phytopathogenic Mollicutes, 2020, 10, 50.	0.1	0
270	Confirmation of the association of an aster yellows phytoplasma with flat stem and witches' broom disease of Hibiscus cannabinus in the north east region of India. Phytopathogenic Mollicutes, 2020, 10, 152-157.	0.1	0