Michael H Huang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5099769/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Catalytic Growth of Zinc Oxide Nanowires by Vapor Transport. Advanced Materials, 2001, 13, 113-116.	11.1	2,605
2	Continuous formation of supported cubic and hexagonal mesoporous films by sol–gel dip-coating. Nature, 1997, 389, 364-368.	13.7	1,417
3	Surface Plasmonic Effects of Metallic Nanoparticles on the Performance of Polymer Bulk Heterojunction Solar Cells. ACS Nano, 2011, 5, 959-967.	7.3	959
4	Synthesis of Cu ₂ O Nanocrystals from Cubic to Rhombic Dodecahedral Structures and Their Comparative Photocatalytic Activity. Journal of the American Chemical Society, 2012, 134, 1261-1267.	6.6	687
5	Au Nanocube-Directed Fabrication of Auâ^Pd Coreâ^Shell Nanocrystals with Tetrahexahedral, Concave Octahedral, and Octahedral Structures and Their Electrocatalytic Activity. Journal of the American Chemical Society, 2010, 132, 14546-14553.	6.6	375
6	Synthesis of Submicrometer-Sized Cu ₂ O Crystals with Morphological Evolution from Cubic to Hexapod Structures and Their Comparative Photocatalytic Activity. Journal of Physical Chemistry C, 2009, 113, 14159-14164.	1.5	374
7	Ag nanowire formation within mesoporous silica. Chemical Communications, 2000, , 1063-1064.	2.2	349
8	Seedâ€Mediated Synthesis of Monodispersed Cu ₂ O Nanocubes with Five Different Size Ranges from 40 to 420 nm. Advanced Functional Materials, 2007, 17, 3773-3780.	7.8	340
9	Morphologically controlled synthesis of Cu2O nanocrystals and their properties. Nano Today, 2010, 5, 106-116.	6.2	301
10	Fabrication of Truncated Rhombic Dodecahedral Cu ₂ O Nanocages and Nanoframes by Particle Aggregation and Acidic Etching. Journal of the American Chemical Society, 2008, 130, 12815-12820.	6.6	286
11	Seed-Mediated Synthesis of Gold Nanocrystals with Systematic Shape Evolution from Cubic to Trisoctahedral and Rhombic Dodecahedral Structures. Langmuir, 2010, 26, 12307-12313.	1.6	286
12	Plasmonic-enhanced polymer photovoltaic devices incorporating solution-processable metal nanoparticles. Applied Physics Letters, 2009, 95, .	1.5	272
13	Seed-Mediated Synthesis of Palladium Nanorods and Branched Nanocrystals and Their Use as Recyclable Suzuki Coupling Reaction Catalysts. Journal of the American Chemical Society, 2009, 131, 9114-9121.	6.6	270
14	Growth of Ultralong ZnO Nanowires on Silicon Substrates by Vapor Transport and Their Use as Recyclable Photocatalysts. Chemistry of Materials, 2007, 19, 5143-5147.	3.2	264
15	Au Nanocrystal-Directed Growth of Auâ^'Cu ₂ O Coreâ^'Shell Heterostructures with Precise Morphological Control. Journal of the American Chemical Society, 2009, 131, 17871-17878.	6.6	237
16	Facet-Dependent and Au Nanocrystal-Enhanced Electrical and Photocatalytic Properties of Auâ^'Cu ₂ O Coreâ^'Shell Heterostructures. Journal of the American Chemical Society, 2011, 133, 1052-1057.	6.6	237
17	Hydrothermal Synthesis of ZnO Microspheres and Hexagonal Microrods with Sheetlike and Platelike Nanostructures. Journal of Physical Chemistry B, 2005, 109, 20115-20121.	1.2	226
18	Facile Synthesis of Cu ₂ 0 Nanocrystals with Systematic Shape Evolution from Cubic to Octahedral Structures. Journal of Physical Chemistry C, 2008, 112, 18355-18360.	1.5	222

#	Article	IF	CITATIONS
19	Facet-Dependent Electrical Conductivity Properties of Cu ₂ O Crystals. Nano Letters, 2015, 15, 2155-2160.	4.5	203
20	Synthesis of Branched Gold Nanocrystals by a Seeding Growth Approach. Langmuir, 2005, 21, 2012-2016.	1.6	200
21	Seed-Mediated Synthesis of Branched Gold Nanocrystals Derived from the Side Growth of Pentagonal Bipyramids and the Formation of Gold Nanostars. Chemistry of Materials, 2009, 21, 110-114.	3.2	200
22	Facet-Dependent Catalytic Activity of Gold Nanocubes, Octahedra, and Rhombic Dodecahedra toward 4-Nitroaniline Reduction. Journal of Physical Chemistry C, 2012, 116, 23757-23763.	1.5	199
23	Fabrication of Au–Pd Core–Shell Heterostructures with Systematic Shape Evolution Using Octahedral Nanocrystal Cores and Their Catalytic Activity. Journal of the American Chemical Society, 2011, 133, 19993-20000.	6.6	198
24	Shapeâ€Controlled Synthesis of Polyhedral Nanocrystals and Their Facetâ€Dependent Properties. Advanced Functional Materials, 2012, 22, 14-24.	7.8	198
25	High-Density Assembly of Gold Nanoparticles on Multiwalled Carbon Nanotubes Using 1-Pyrenemethylamine as Interlinker. Journal of Physical Chemistry B, 2006, 110, 2031-2036.	1.2	184
26	Thermal Aqueous Solution Approach for the Synthesis of Triangular and Hexagonal Gold Nanoplates with Three Different Size Ranges. Inorganic Chemistry, 2006, 45, 808-813.	1.9	178
27	Hydrothermal Synthesis of Monodispersed Octahedral Gold Nanocrystals with Five Different Size Ranges and Their Self-Assembled Structures. Chemistry of Materials, 2008, 20, 7570-7574.	3.2	159
28	Seed-Mediated Synthesis of High Aspect Ratio Gold Nanorods with Nitric Acid. Chemistry of Materials, 2005, 17, 6447-6451.	3.2	156
29	Facet-dependent photocatalytic properties of Cu ₂ O crystals probed by using electron, hole and radical scavengers. Journal of Materials Chemistry A, 2017, 5, 15116-15123.	5.2	156
30	Aqueous Phase Synthesis of Au–Ag Core–Shell Nanocrystals with Tunable Shapes and Their Optical and Catalytic Properties. Journal of the American Chemical Society, 2014, 136, 396-404.	6.6	148
31	Facetâ€Dependent Catalytic Activity of Cu ₂ 0 Nanocrystals in the Oneâ€Pot Synthesis of 1,2,3â€Triazoles by Multicomponent Click Reactions. Chemistry - A European Journal, 2013, 19, 16036-16043.	1.7	143
32	Synthesis of Highly Faceted Pentagonal- and Hexagonal-Shaped Gold Nanoparticles with Controlled Sizes by Sodium Dodecyl Sulfate. Langmuir, 2004, 20, 7820-7824.	1.6	137
33	Cu ₂ O Nanocrystalâ€Templated Growth of Cu ₂ S Nanocages with Encapsulated Au Nanoparticles and In‧itu Transmission Xâ€ray Microscopy Study. Advanced Functional Materials, 2011, 21, 792-797.	7.8	134
34	A Comparative Study of Gold Nanocubes, Octahedra, and Rhombic Dodecahedra as Highly Sensitive SERS Substrates. Inorganic Chemistry, 2011, 50, 8106-8111.	1.9	127
35	Facet-dependent properties of polyhedral nanocrystals. Chemical Communications, 2014, 50, 1634.	2.2	126
36	Gold-Catalyzed Low-Temperature Growth of Cadmium Oxide Nanowires by Vapor Transport. Journal of Physical Chemistry B, 2006, 110, 13717-13721.	1.2	116

#	Article	IF	CITATIONS
37	The influence of shell thickness of Au@TiO2 core–shell nanoparticles on the plasmonic enhancement effect in dye-sensitized solar cells. Nanoscale, 2013, 5, 7953.	2.8	116
38	Solvothermal Synthesis of Zincblende and Wurtzite CuInS ₂ Nanocrystals and Their Photovoltaic Application. Langmuir, 2012, 28, 8496-8501.	1.6	113
39	Strong Facet Effects on Interfacial Charge Transfer Revealed through the Examination of Photocatalytic Activities of Various Cu ₂ O–ZnO Heterostructures. Advanced Functional Materials, 2017, 27, 1604635.	7.8	112
40	Direct Synthesis of Branched Gold Nanocrystals and Their Transformation into Spherical Nanoparticles. Journal of Physical Chemistry B, 2006, 110, 19291-19294.	1.2	111
41	Investigation of the Growth Process of Gold Nanoplates Formed by Thermal Aqueous Solution Approach and the Synthesis of Ultra-Small Gold Nanoplates. Journal of Physical Chemistry C, 2007, 111, 2533-2538.	1.5	101
42	Formation of Diverse Supercrystals from Self-Assembly of a Variety of Polyhedral Gold Nanocrystals. Journal of the American Chemical Society, 2013, 135, 2684-2693.	6.6	101
43	Investigation of the Effects of Polyhedral Gold Nanocrystal Morphology and Facets on the Formation of Au–Cu ₂ O Core–Shell Heterostructures. Chemistry of Materials, 2011, 23, 2677-2684.	3.2	100
44	Direct High-Yield Synthesis of High Aspect Ratio Gold Nanorods. Crystal Growth and Design, 2007, 7, 831-835.	1.4	99
45	Direct formation of small Cu2O nanocubes, octahedra, and octapods for efficient synthesis of triazoles. Nanoscale, 2014, 6, 8704.	2.8	99
46	Highly Facetâ€Dependent Photocatalytic Properties of Cu ₂ O Crystals Established through the Formation of Auâ€Decorated Cu ₂ O Heterostructures. Chemistry - A European Journal, 2016, 22, 12548-12556.	1.7	98
47	Facet-Dependent Electrical, Photocatalytic, and Optical Properties of Semiconductor Crystals and Their Implications for Applications. ACS Applied Materials & Interfaces, 2018, 10, 4-15.	4.0	98
48	Synthesis of Diverse Ag ₂ O Crystals and Their Facet-Dependent Photocatalytic Activity Examination. ACS Applied Materials & Interfaces, 2016, 8, 19672-19679.	4.0	96
49	Synthesis of Ag ₃ PO ₄ Crystals with Tunable Shapes for Facet-Dependent Optical Property, Photocatalytic Activity, and Electrical Conductivity Examinations. ACS Applied Materials & Interfaces, 2017, 9, 39086-39093.	4.0	95
50	In Situ Luminescence Probing of the Chemical and Structural Changes during Formation of Dip-Coated Lamellar Phase Sodium Dodecyl Sulfate Solâ^Gel Thin Films. Journal of the American Chemical Society, 2000, 122, 3739-3745.	6.6	93
51	Seedâ€Mediated and Iodideâ€Assisted Synthesis of Gold Nanocrystals with Systematic Shape Evolution from Rhombic Dodecahedral to Octahedral Structures. Chemistry - A European Journal, 2011, 17, 9746-9752.	1.7	90
52	Facetâ€Dependent and Lightâ€Assisted Efficient Hydrogen Evolution from Ammonia Borane Using Gold–Palladium Core–Shell Nanocatalysts. Angewandte Chemie - International Edition, 2016, 55, 7222-7226.	7.2	85
53	In Situ Probing by Fluorescence Spectroscopy of the Formation of Continuous Highly-Ordered Lamellar-Phase Mesostructured Thin Films. Langmuir, 1998, 14, 7331-7333.	1.6	82
54	Facet-dependent optical properties of polyhedral Au–Cu2O core–shell nanocrystals. Nanoscale, 2014, 6, 4316.	2.8	81

#	Article	IF	CITATIONS
55	Facet-dependent and interfacial plane-related photocatalytic behaviors of semiconductor nanocrystals and heterostructures. Nano Today, 2019, 28, 100768.	6.2	81
56	Synthesis of Ag2O Nanocrystals with Systematic Shape Evolution from Cubic to Hexapod Structures and Their Surface Properties. Chemistry - A European Journal, 2010, 16, 14167-14174.	1.7	80
57	Investigation of Relative Stability of Different Facets of Ag ₂ 0 Nanocrystals through Face-Selective Etching. Journal of Physical Chemistry C, 2011, 115, 17768-17773.	1.5	80
58	Polyhedral Au–Pd Core–Shell Nanocrystals as Highly Spectrally Responsive and Reusable Hydrogen Sensors in Aqueous Solution. Angewandte Chemie - International Edition, 2013, 52, 12709-12713.	7.2	78
59	Facetâ€Dependent and Lightâ€Assisted Efficient Hydrogen Evolution from Ammonia Borane Using Gold–Palladium Core–Shell Nanocatalysts. Angewandte Chemie, 2016, 128, 7338-7342.	1.6	78
60	Synthesis of Ultrasmall Cu ₂ O Nanocubes and Octahedra with Tunable Sizes for Facet-Dependent Optical Property Examination. Small, 2016, 12, 3530-3534.	5.2	75
61	Aqueous Phase Synthesis of Au–Cu Core–Shell Nanocubes and Octahedra with Tunable Sizes and Noncentrally Located Cores. Chemistry of Materials, 2016, 28, 3073-3079.	3.2	70
62	Shape-Tunable SrTiO ₃ Crystals Revealing Facet-Dependent Optical and Photocatalytic Properties. Journal of Physical Chemistry C, 2019, 123, 13664-13671.	1.5	65
63	Investigation of facet effects on the catalytic activity of Cu2O nanocrystals for efficient regioselective synthesis of 3,5-disubstituted isoxazoles. Nanoscale, 2013, 5, 12494.	2.8	64
64	Seed-Mediated Growth of Ultralong Gold Nanorods and Nanowires with a Wide Range of Length Tunability. Langmuir, 2013, 29, 10491-10497.	1.6	62
65	Achieving polyhedral nanocrystal growth with systematic shape control. Journal of Materials Chemistry A, 2013, 1, 8081.	5.2	60
66	Facetâ€Dependent Optical Properties of Semiconductor Nanocrystals. Small, 2019, 15, e1804726.	5.2	58
67	Formation of Arrays of Gallium Nitride Nanorods within Mesoporous Silica SBA-15. Journal of Physical Chemistry B, 2005, 109, 17842-17847.	1.2	56
68	Photothermal effects from Au–Cu ₂ O core–shell nanocubes, octahedra, and nanobars with broad near-infrared absorption tunability. Nanoscale, 2016, 8, 965-972.	2.8	56
69	Facet-Dependent Electrical Conductivity Properties of PbS Nanocrystals. Chemistry of Materials, 2016, 28, 1574-1580.	3.2	56
70	Scalable Synthesis of Size-Tunable Small Cu ₂ O Nanocubes and Octahedra for Facet-Dependent Optical Characterization and Pseudomorphic Conversion to Cu Nanocrystals. ACS Sustainable Chemistry and Engineering, 2019, 7, 10467-10476.	3.2	56
71	In Situ Fluorescence Probing of Molecular Mobility and Chemical Changes during Formation of Dip-Coated Solâ^'Gel Silica Thin Films. Chemistry of Materials, 2000, 12, 231-235.	3.2	55
72	Facetâ€Dependent Optical Properties Revealed through Investigation of Polyhedral Au–Cu ₂ O and Bimetallic Core–Shell Nanocrystals. Small, 2015, 11, 2716-2726.	5.2	54

#	Article	IF	CITATIONS
73	Formation of supercrystals through self-assembly of polyhedral nanocrystals. Nano Today, 2015, 10, 81-92.	6.2	53
74	Modified Semiconductor Band Diagrams Constructed from Optical Characterization of Size-Tunable Cu ₂ O Cubes, Octahedra, and Rhombic Dodecahedra. Journal of Physical Chemistry C, 2018, 122, 13027-13033.	1.5	52
75	Inactive Cu ₂ O Cubes Become Highly Photocatalytically Active with Ag ₂ S Deposition. ACS Applied Materials & Interfaces, 2021, 13, 11515-11523.	4.0	52
76	Distinct Carrier Transport Properties Across Horizontally vs Vertically Oriented Heterostructures of 2D/3D Perovskites. Journal of the American Chemical Society, 2021, 143, 4969-4978.	6.6	52
77	Formation of Titanium Nitride Nanoparticles within Mesoporous Silica SBA-15. Journal of Physical Chemistry B, 2005, 109, 4404-4409.	1.2	51
78	Facet-dependent optical properties of Pd–Cu ₂ O core–shell nanocubes and octahedra. Nanoscale, 2015, 7, 11135-11141.	2.8	51
79	Plasmonic-enhanced performance for polymer solar cells prepared with inverted structures. Applied Physics Letters, 2012, 101, 193902.	1.5	50
80	Fabrication of Diverse Cu ₂ O Nanoframes through Face-Selective Etching. Journal of Physical Chemistry C, 2013, 117, 24611-24617.	1.5	50
81	Facet-Dependent Surface Plasmon Resonance Properties of Au-Cu ₂ O Core-Shell Nanocubes, Octahedra, and Rhombic Dodecahedra. Small, 2015, 11, 195-201.	5.2	50
82	Metalâ€like Band Structures of Ultrathin Si {111} and {112} Surface Layers Revealed through Density Functional Theory Calculations. Chemistry - A European Journal, 2017, 23, 11866-11871.	1.7	49
83	Facet-Dependent Optical and Photothermal Properties of Au@Ag–Cu ₂ O Core–Shell Nanocrystals. Chemistry of Materials, 2016, 28, 5140-5146.	3.2	48
84	Facetâ€Dependent Electrical Conductivity Properties of Silver Oxide Crystals. Chemistry - an Asian Journal, 2017, 12, 293-297.	1.7	48
85	Mild Synthesis of Size-Tunable CeO ₂ Octahedra for Band Gap Variation. Chemistry of Materials, 2020, 32, 2631-2638.	3.2	48
86	Control of Regioselectivity over Gold Nanocrystals of Different Surfaces for the Synthesis of 1,4â€Disubstituted Triazole through the Click Reaction. Chemistry - A European Journal, 2014, 20, 15991-15997.	1.7	47
87	Surfactant-Directed Fabrication of Supercrystals from the Assembly of Polyhedral Au–Pd Core–Shell Nanocrystals and Their Electrical and Optical Properties. Journal of the American Chemical Society, 2015, 137, 2265-2275.	6.6	47
88	Aqueous Phase Synthesis of Palladium Tripod Nanostructures for Sonogashira Coupling Reactions. Langmuir, 2012, 28, 11258-11264.	1.6	46
89	Seedâ€Mediated Growth of Silver Nanocubes in Aqueous Solution with Tunable Size and Their Conversion to Au Nanocages with Efficient Photothermal Property. Chemistry - A European Journal, 2016, 22, 2326-2332.	1.7	46
90	Silicon Wafers with Facetâ€Dependent Electrical Conductivity Properties. Angewandte Chemie - International Edition, 2017, 56, 15339-15343.	7.2	46

#	Article	IF	CITATIONS
91	Direct Synthesis of Palladium Nanocrystals in Aqueous Solution with Systematic Shape Evolution. Langmuir, 2015, 31, 6538-6545.	1.6	45
92	Facile synthesis of Au–Pd core–shell nanocrystals with systematic shape evolution and tunable size for plasmonic property examination. Nanoscale, 2014, 6, 7656.	2.8	43
93	Facet-Specific Photocatalytic Activity Enhancement of Cu ₂ O Polyhedra Functionalized with 4-Ethynylanaline Resulting from Band Structure Tuning. ACS Central Science, 2020, 6, 984-994.	5.3	42
94	Density Functional Theory Calculations Revealing Metalâ€like Band Structures for Ultrathin Germanium (111) and (211) Surface Layers. Chemistry - an Asian Journal, 2018, 13, 1972-1976.	1.7	41
95	Facet-Dependent Photocatalytic Behaviors of ZnS-Decorated Cu ₂ O Polyhedra Arising from Tunable Interfacial Band Alignment. ACS Applied Materials & Interfaces, 2019, 11, 3582-3589.	4.0	39
96	Synthesis and Optical Properties of 1-Alkyl-3-Methylimidazolium Lauryl Sulfate Ionic Liquids. Journal of Fluorescence, 2007, 17, 613-618.	1.3	38
97	Cu ₂ O Pseudomorphic Conversion to Cu Crystals for Diverse Nitroarene Reduction. ACS Sustainable Chemistry and Engineering, 2018, 6, 11071-11077.	3.2	37
98	Shape-Dependent Light Harvesting of 3D Gold Nanocrystals on Bulk Heterojunction Solar Cells: Plasmonic or Optical Scattering Effect?. Journal of Physical Chemistry C, 2015, 119, 7554-7564.	1.5	36
99	Density Functional Theory Calculations Revealing Metalâ€like Band Structures and Work Function Variation for Ultrathin Gallium Arsenide (111) Surface Layers. Chemistry - an Asian Journal, 2019, 14, 2316-2321.	1.7	36
100	Polyhedral Cu2O to Cu pseudomorphic conversion for stereoselective alkyne semihydrogenation. Chemical Science, 2018, 9, 2517-2524.	3.7	34
101	Formation of Short In2O3Nanorod Arrays Within Mesoporous Silica. Journal of Physical Chemistry C, 2008, 112, 2304-2307.	1.5	31
102	The growth of ultralong and highly blue luminescent gallium oxide nanowires and nanobelts, and direct horizontal nanowire growth on substrates. Nanotechnology, 2008, 19, 155604.	1.3	31
103	Photocatalytic Activity Suppression of CdS Nanoparticle-Decorated Cu2O Octahedra and Rhombic Dodecahedra. Journal of Physical Chemistry C, 2018, 122, 12944-12950.	1.5	31
104	Hexagonal to Lamellar Mesostructural Changes in Silicate Films Caused by Organic Additives. Chemistry of Materials, 2002, 14, 5153-5162.	3.2	30
105	Fast Synthesis of PbS Nanocrystals in Aqueous Solution with Shape Evolution from Cubic to Octahedral Structures and Their Assembled Structures. Chemistry - A European Journal, 2012, 18, 14473-14478.	1.7	29
106	Sequential Cation Exchange Generated Superlattice Nanowires Forming Multiple p–n Heterojunctions. ACS Nano, 2014, 8, 9422-9426.	7.3	29
107	Aqueousâ€Phase Synthesis of Sizeâ€Tunable Copper Nanocubes for Efficient Aryl Alkyne Hydroboration. Chemistry - an Asian Journal, 2017, 12, 2318-2322.	1.7	29
108	Hydrothermal Synthesis of Free-Floating Au2S Nanoparticle Superstructures. Journal of Physical Chemistry C, 2008, 112, 11661-11666.	1.5	28

#	Article	IF	CITATIONS
109	Formation of Hexabranched GeO2 Nanoparticles via a Reverse Micelle System. Journal of Physical Chemistry C, 2009, 113, 6056-6060.	1.5	28
110	Formation of Free-Standing Supercrystals from the Assembly of Polyhedral Gold Nanocrystals by Surfactant Diffusion in the Solution. Chemistry of Materials, 2014, 26, 4882-4888.	3.2	27
111	Formation of Hollow Gallium Nitride Spheres via Silica Sphere Templates. Journal of Physical Chemistry C, 2009, 113, 925-929.	1.5	26
112	Double layer micellar stabilization of gold nanocrystals by greener ionic liquid 1-butyl-3-methylimidazolium lauryl sulfate. Materials Letters, 2010, 64, 1109-1112.	1.3	26
113	Synthesis of Small Au–Ag Core–Shell Cubes, Cuboctahedra, and Octahedra with Size Tunability and Their Optical and Photothermal Properties. Small, 2015, 11, 6018-6025.	5.2	25
114	Au–Cu core–shell nanocube-catalyzed click reactions for efficient synthesis of diverse triazoles. Nanoscale, 2017, 9, 6970-6974.	2.8	25
115	Cu2O polyhedra for aryl alkyne homocoupling reactions. Catalysis Science and Technology, 2020, 10, 6948-6952.	2.1	25
116	Surface-dependent band structure variations and bond-level deviations in Cu ₂ 0. Inorganic Chemistry Frontiers, 2021, 8, 4200-4208.	3.0	24
117	Spin-Coated Periodic Mesoporous Organosilica Thin Films with Molecular-Scale Order within the Organosilica Wall. Chemistry of Materials, 2007, 19, 5986-5990.	3.2	23
118	Facetâ€Dependent Catalytic Activity of Palladium Nanocrystals in Tsuji–Trost Allylic Amination Reactions with Product Selectivity. ChemCatChem, 2015, 7, 1813-1817.	1.8	23
119	Systematic Shape Evolution of Gold Nanocrystals Achieved through Adjustment in the Amount of HAuCl ₄ Solution Used. Journal of Physical Chemistry C, 2018, 122, 25118-25126.	1.5	23
120	Germanium Wafers Possessing Facetâ€Dependent Electrical Conductivity Properties. Angewandte Chemie - International Edition, 2018, 57, 16162-16165.	7.2	23
121	Polyhedral Cu ₂ O Crystals for Diverse Aryl Alkyne Hydroboration Reactions. Chemistry - A European Journal, 2019, 25, 1300-1303.	1.7	23
122	Facet-Dependent and Adjacent Facet-Related Electrical Conductivity Properties of SrTiO ₃ Crystals. Journal of Physical Chemistry C, 2021, 125, 10051-10056.	1.5	23
123	Direct synthesis of size-tunable PbS nanocubes and octahedra and the pH effect on crystal shape control. Dalton Transactions, 2015, 44, 15088-15094.	1.6	22
124	Photocatalytic activity enhancement of Cu ₂ O cubes functionalized with 2-ethynyl-6-methoxynaphthalene through band structure modulation. Journal of Materials Chemistry C, 2022, 10, 3980-3989.	2.7	22
125	Formation of Ag ₂ S Cages from Polyhedral Ag ₂ O Nanocrystals and their Electrochemical Properties. Chemistry - an Asian Journal, 2013, 8, 1847-1853.	1.7	21
126	Photocatalytic Activity Suppression of Ag ₃ PO ₄ -Deposited Cu ₂ O Octahedra and Rhombic Dodecahedra. Journal of Physical Chemistry C, 2019, 123, 2314-2320.	1.5	21

#	Article	IF	CITATIONS
127	Semiconductor nanocrystals possessing broadly size―and facetâ€dependent optical properties. Journal of the Chinese Chemical Society, 2021, 68, 45-50.	0.8	21
128	Formation of Silver Rhombic Dodecahedra, Octahedra, and Cubes through Pseudomorphic Conversion of Ag2O Crystals with Nitroarene Reduction Activity. ACS Applied Materials & Interfaces, 2019, 11, 38039-38045.	4.0	20
129	Facet-Dependent Surface Trap States and Carrier Lifetimes of Silicon. Nano Letters, 2020, 20, 1952-1958.	4.5	20
130	GaAs wafers possessing facet-dependent electrical conductivity properties. Journal of Materials Chemistry C, 2020, 8, 5456-5460.	2.7	20
131	Current Rectification and Photo-Responsive Current Achieved through Interfacial Facet Control of Cu ₂ O–Si Wafer Heterojunctions. ACS Central Science, 2021, 7, 1929-1937.	5.3	19
132	CsPbBr ₃ and CsPbI ₃ rhombic dodecahedra and nanocubes displaying facet-dependent optical properties. Inorganic Chemistry Frontiers, 2021, 8, 4685-4695.	3.0	17
133	Growth of Coreâ^'Shell Gaâ^'GaN Nanostructures via a Conventional Reflux Method and the Formation of Hollow GaN Spheres. Journal of Physical Chemistry C, 2009, 113, 3625-3630.	1.5	16
134	Size-Tunable Cu ₃ Se ₂ Nanocubes Possessing Surface Plasmon Resonance Properties for Photothermal Applications. ACS Applied Nano Materials, 2020, 3, 8446-8452.	2.4	16
135	Tracing the Surfactant-Mediated Nucleation, Growth, and Superpacking of Gold Supercrystals Using Time and Spatially Resolved X-ray Scattering. Langmuir, 2017, 33, 3253-3261.	1.6	15
136	Unusually Large Lattice Mismatchâ€Induced Optical Behaviors of Au@Cu–Cu ₂ O Core–Shell Nanocrystals with Noncentrally Located Cores. Particle and Particle Systems Characterization, 2018, 35, 1800112.	1.2	15
137	Large Facet-Specific Built-in Potential Differences Affecting Trap State Densities and Carrier Lifetimes of GaAs Wafers. Journal of Physical Chemistry C, 2020, 124, 21577-21582.	1.5	15
138	Germanium Possessing Facet-Specific Trap States and Carrier Lifetimes. Journal of Physical Chemistry C, 2020, 124, 13304-13309.	1.5	15
139	Recent Advances in Bimetallic Cuâ€Based Nanocrystals for Electrocatalytic CO ₂ Conversion. Chemistry - an Asian Journal, 2021, 16, 2168-2184.	1.7	15
140	Formation of Indium Nitride Nanorods within Mesoporous Silica SBA-15. Inorganic Chemistry, 2008, 47, 3135-3139.	1.9	13
141	Silicon Wafers with Facetâ€Dependent Electrical Conductivity Properties. Angewandte Chemie, 2017, 129, 15541-15545.	1.6	12
142	Formation of size-tunable CuI tetrahedra showing small band gap variation and high catalytic performance towards click reactions. Journal of Colloid and Interface Science, 2021, 591, 1-8.	5.0	12
143	4-Nitrophenylacetylene-modified Cu ₂ O cubes and rhombic dodecahedra showing superior photocatalytic activity through surface band structure modulation. Journal of Materials Chemistry C, 2022, 10, 8422-8431.	2.7	11
144	InÂsitu fluorescence probing of the chemical and structural changes during formation of hexagonal phase cetyltrimethylammonium bromide and lamellar phase CTAB/Poly(dodecylmethacrylate) sol–gel silica thin films. Journal of Sol-Gel Science and Technology, 2008, 47, 300-310.	1.1	10

#	Article	IF	CITATIONS
145	Novel silica stabilization method for the analysis of fine nanocrystals using coherent X-ray diffraction imaging. Journal of Synchrotron Radiation, 2016, 23, 953-958.	1.0	10
146	Formation of size-tunable CdS rhombic dodecahedra. Journal of Materials Chemistry C, 2021, 9, 5992-5997.	2.7	10
147	Growth of CeO ₂ nanocubes showing size-dependent optical and oxygen evolution reaction behaviors. Dalton Transactions, 2021, 50, 15170-15175.	1.6	10
148	Facet-dependent electrical conductivity properties of GaN wafers. Journal of Materials Chemistry C, 2021, 9, 15354-15358.	2.7	10
149	Surface-dependent band structure variations and bond deviations of GaN. Physical Chemistry Chemical Physics, 2022, 24, 9135-9140.	1.3	10
150	Aqueousâ€Phase Synthesis of Sizeâ€Tunable PbSe Nanocubes at Room Temperature for Optical Property Characterization. Chemistry - A European Journal, 2019, 25, 367-372.	1.7	8
151	Synthesis of sizeâ€ŧunable zinc blende ZnS nanocrystals. Journal of the Chinese Chemical Society, 2020, 67, 339-343.	0.8	8
152	Formation of CsPbCl ₃ Cubes and Edge-Truncated Cuboids at Room Temperature. ACS Sustainable Chemistry and Engineering, 2022, 10, 1578-1584.	3.2	8
153	Origin and manifestation of semiconductor facet effects. Journal of the Chinese Chemical Society, 2022, 69, 1190-1199.	0.8	6
154	Diffraction data of core-shell nanoparticles from an X-ray free electron laser. Scientific Data, 2017, 4, 170048.	2.4	4
155	Synthesis of Zinc Blende-Phased CdSe Nanocrystals with Size-Tunable Optical Properties and Adjustable Valence Band Positions. Langmuir, 2022, 38, 2729-2736.	1.6	4
156	Facet-dependent electrical conductivity properties of a 4H-SiC wafer. Journal of Materials Chemistry C, 2022, 10, 10424-10428.	2.7	4
157	Germanium Wafers Possessing Facetâ€Dependent Electrical Conductivity Properties. Angewandte Chemie, 2018, 130, 16394-16397.	1.6	3
158	Strategies for spatially separating photoactive molecules in mesosfructured sol-gel silicate films. Studies in Surface Science and Catalysis, 2003, , 413-418.	1.5	2
159	Reply to Comment on "Spin-Coated Periodic Mesoporous Organosilica Thin Films with Molecular-Scale Order within the Organosilica Wall― Chemistry of Materials, 2008, 20, 4532-4532.	3.2	1
160	Fabrication of truncated rhombic dodecahedral Cu <inf>2</inf> O nanocages and nanoframes. , 2010, , .		0
161	Aqueous solution syntheses of palladium nanorods and gold octahedra and their assembly. , 2010, , .		0
162	Plasmonic-enhanced polymer photovoltaic devices incorporating Au nanoparticles. , 2010, , .		0

Plasmonic-enhanced polymer photovoltaic devices incorporating Au nanoparticles. , 2010, , . 162

#	Article	IF	CITATIONS
163	Influence of morphology on the plasmonic enhancement effect of Au@TiO2 core-shell nanoparticles in dye-sensitized solar cells. , 2013, , .		0