
## **Thomas L Poulos**

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5099720/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                          | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | High-resolution crystal structure of cytochrome P450cam. Journal of Molecular Biology, 1987, 195,<br>687-700.                                                                                    | 4.2  | 1,418     |
| 2  | Heme Enzyme Structure and Function. Chemical Reviews, 2014, 114, 3919-3962.                                                                                                                      | 47.7 | 1,049     |
| 3  | Crystal structure of horseradish peroxidase C at 2.15 Ã resolution. Nature Structural Biology, 1997, 4,<br>1032-1038.                                                                            | 9.7  | 642       |
| 4  | Crystal Structure of Constitutive Endothelial Nitric Oxide Synthase. Cell, 1998, 95, 939-950.                                                                                                    | 28.9 | 636       |
| 5  | Crystal structure of substrate-free Pseudomonas putida cytochrome P-450. Biochemistry, 1986, 25, 5314-5322.                                                                                      | 2.5  | 608       |
| 6  | Engineered ascorbate peroxidase as a genetically encoded reporter for electron microscopy. Nature<br>Biotechnology, 2012, 30, 1143-1148.                                                         | 17.5 | 584       |
| 7  | The crystal structure of chloroperoxidase: a heme peroxidase–cytochrome P450 functional hybrid.<br>Structure, 1995, 3, 1367-1378.                                                                | 3.3  | 446       |
| 8  | The structure of the cytochrome p450BM-3 haem domain complexed with the fatty acid substrate, palmitoleic acid. Nature Structural Biology, 1997, 4, 140-146.                                     | 9.7  | 433       |
| 9  | Structure of cytochrome P450eryF involved in erythromycin biosynthesis. Nature Structural and Molecular Biology, 1995, 2, 144-153.                                                               | 8.2  | 376       |
| 10 | Crystal structure of human heme oxygenase-1. Nature Structural Biology, 1999, 6, 860-867.                                                                                                        | 9.7  | 282       |
| 11 | Crystal structure of recombinant pea cytosolic ascorbate peroxidase. Biochemistry, 1995, 34, 4331-4341.                                                                                          | 2.5  | 274       |
| 12 | The crystal structure of peanut peroxidase. Structure, 1996, 4, 311-321.                                                                                                                         | 3.3  | 270       |
| 13 | Structure?function studies on nitric oxide synthases. Journal of Inorganic Biochemistry, 2005, 99, 293-305.                                                                                      | 3.5  | 252       |
| 14 | Understanding the Role of the Essential Asp251 in Cytochrome P450cam Using Site-Directed<br>Mutagenesis, Crystallography, and Kinetic Solvent Isotope Effect. Biochemistry, 1998, 37, 9211-9219. | 2.5  | 243       |
| 15 | Structure and mechanism of the complex between cytochrome P4503A4 and ritonavir. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 18422-18427.        | 7.1  | 240       |
| 16 | Crystal structure of the cytochrome P-450CAM active site mutant Thr252Ala. Biochemistry, 1991, 30, 11420-11429.                                                                                  | 2.5  | 232       |
| 17 | The role of the proximal ligand in heme enzymes. Journal of Biological Inorganic Chemistry, 1996, 1,<br>356-359.                                                                                 | 2.6  | 219       |
| 18 | Crystal structure of the carbon monoxide-substrate-cytochrome P-450CAM ternary complex.<br>Biochemistry, 1989, 28, 7586-7592.                                                                    | 2.5  | 217       |

| #  | Article                                                                                                                                                                                                               | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | A metal-mediated hydride shift mechanism for xylose isomerase based on the 1.6 ÃStreptomycs<br>rubiginosus structure with xylitol andD-xylose. Proteins: Structure, Function and Bioinformatics,<br>1991, 9, 153-173. | 2.6  | 208       |
| 20 | Structure of the CO sensing transcription activator CooA. Nature Structural Biology, 2000, 7, 876-880.                                                                                                                | 9.7  | 208       |
| 21 | Crystal Structures of Zinc-free and -bound Heme Domain of Human Inducible Nitric-oxide Synthase.<br>Journal of Biological Chemistry, 1999, 274, 21276-21284.                                                          | 3.4  | 196       |
| 22 | Evolutionary History of a Specialized P450 Propane Monooxygenase. Journal of Molecular Biology, 2008, 383, 1069-1080.                                                                                                 | 4.2  | 185       |
| 23 | Crystallographic Study on the Dioxygen Complex of Wild-type and Mutant Cytochrome P450cam.<br>Journal of Biological Chemistry, 2005, 280, 31659-31663.                                                                | 3.4  | 182       |
| 24 | Identification of a Porphyrin .pi. Cation Radical in Ascorbate Peroxidase Compound I. Biochemistry, 1995, 34, 4342-4345.                                                                                              | 2.5  | 176       |
| 25 | Crystal Structure of a Thermophilic Cytochrome P450 from the Archaeon Sulfolobus solfataricus.<br>Journal of Biological Chemistry, 2000, 275, 31086-31092.                                                            | 3.4  | 176       |
| 26 | Cytochrome P450 <sub>cam</sub> : crystallography, oxygen activation, and electron transfer <sup>1</sup> . FASEB Journal, 1992, 6, 674-679.                                                                            | 0.5  | 163       |
| 27 | Structural Basis for Effector Control and Redox Partner Recognition in Cytochrome P450. Science, 2013, 340, 1227-1230.                                                                                                | 12.6 | 160       |
| 28 | Proteases of enhanced stability: Characteization of a thermostable variant of subtilisin. Proteins:<br>Structure, Function and Bioinformatics, 1986, 1, 326-334.                                                      | 2.6  | 154       |
| 29 | Stereochemistry of the chloroperoxidase active site: crystallographic and molecular-modeling studies. Chemistry and Biology, 1998, 5, 461-473.                                                                        | 6.0  | 149       |
| 30 | High-Resolution Crystal Structures and Spectroscopy of Native and Compound I<br>CytochromecPeroxidaseâ€. Biochemistry, 2003, 42, 5600-5608.                                                                           | 2.5  | 140       |
| 31 | Crystal Structure of Heme Oxygenase from the Gram-Negative PathogenNeisseria meningitidisand a<br>Comparison with Mammalian Heme Oxygenase-1â€. Biochemistry, 2001, 40, 11552-11558.                                  | 2.5  | 136       |
| 32 | Aspartate residue 7 in amyloid $\hat{l}^2$ -protein is critical for classical complement pathway activation:<br>Implications for Alzheimer's disease pathogenesis. Nature Medicine, 1997, 3, 077-079.                 | 30.7 | 134       |
| 33 | Structural Basis for Novel Î-Regioselective Heme Oxygenation in the Opportunistic<br>PathogenPseudomonas aeruginosaâ€,‡. Biochemistry, 2004, 43, 5239-5245.                                                           | 2.5  | 129       |
| 34 | Structural insights into substrate and inhibitor binding sites in human indoleamine 2,3-dioxygenase 1.<br>Nature Communications, 2017, 8, 1693.                                                                       | 12.8 | 129       |
| 35 | The Novel Binding Mode of N-Alkyl-Nâ€~-hydroxyguanidine to Neuronal Nitric Oxide Synthase Provides<br>Mechanistic Insights into NO Biosynthesis. Biochemistry, 2002, 41, 13868-13875.                                 | 2.5  | 122       |
| 36 | Soluble guanylate cyclase. Current Opinion in Structural Biology, 2006, 16, 736-743.                                                                                                                                  | 5.7  | 114       |

| #  | Article                                                                                                                                                                                                                                                         | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Structural and Mechanistic Insights into the Interaction of Cytochrome P4503A4 with<br>Bromoergocryptine, a Type I Ligand. Journal of Biological Chemistry, 2012, 287, 3510-3517.                                                                               | 3.4  | 106       |
| 38 | Thirty years of heme peroxidase structural biology. Archives of Biochemistry and Biophysics, 2010, 500, 3-12.                                                                                                                                                   | 3.0  | 105       |
| 39 | Comparison of the Heme-free and -bound Crystal Structures of Human Heme Oxygenase-1. Journal of<br>Biological Chemistry, 2003, 278, 7834-7843.                                                                                                                  | 3.4  | 104       |
| 40 | Minimal Pharmacophoric Elements and Fragment Hopping, an Approach Directed at Molecular<br>Diversity and Isozyme Selectivity. Design of Selective Neuronal Nitric Oxide Synthase Inhibitors.<br>Journal of the American Chemical Society, 2008, 130, 3900-3914. | 13.7 | 101       |
| 41 | Photoreduction of the active site of the metalloprotein putidaredoxin by synchrotron radiation. Acta Crystallographica Section D: Biological Crystallography, 2007, 63, 951-960.                                                                                | 2.5  | 97        |
| 42 | Cytochrome P450 flexibility. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 13121-13122.                                                                                                                           | 7.1  | 92        |
| 43 | An Engineered Cation Site in Cytochrome c Peroxidase Alters the Reactivity of the Redox Active Tryptophan. Biochemistry, 1996, 35, 6107-6115.                                                                                                                   | 2.5  | 91        |
| 44 | Disruption of an Active Site Hydrogen Bond Converts Human Heme Oxygenase-1 into a Peroxidase.<br>Journal of Biological Chemistry, 2001, 276, 10612-10619.                                                                                                       | 3.4  | 90        |
| 45 | Structural basis for regiospecific midazolam oxidation by human cytochrome P450 3A4. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 486-491.                                                                       | 7.1  | 90        |
| 46 | Structure-Based Inhibitor Design for Evaluation of a CYP3A4 Pharmacophore Model. Journal of Medicinal Chemistry, 2016, 59, 4210-4220.                                                                                                                           | 6.4  | 88        |
| 47 | Crystal Structure of Putidaredoxin, the [2Fe–2S] Component of the P450cam Monooxygenase System from Pseudomonas putida. Journal of Molecular Biology, 2003, 333, 377-392.                                                                                       | 4.2  | 86        |
| 48 | Discovery of Highly Potent and Selective Inhibitors of Neuronal Nitric Oxide Synthase by Fragment<br>Hopping. Journal of Medicinal Chemistry, 2009, 52, 779-797.                                                                                                | 6.4  | 86        |
| 49 | Crystal Structure of <i>Nitrosomonas europaea</i> Cytochrome <i>c</i> Peroxidase and the<br>Structural Basis for Ligand Switching in Bacterial Di-heme Peroxidases. Biochemistry, 2001, 40,<br>13483-13490.                                                     | 2.5  | 83        |
| 50 | Crystal Structures of the Ferrous Dioxygen Complex of Wild-type Cytochrome P450eryF and Its<br>Mutants, A245S and A245T. Journal of Biological Chemistry, 2005, 280, 22102-22107.                                                                               | 3.4  | 83        |
| 51 | Functional implications of interleukin- $1^2$ based on the three-dimensional structure. Proteins: Structure, Function and Bioinformatics, 1992, 12, 10-23.                                                                                                      | 2.6  | 79        |
| 52 | Crystal Structure of Nitric Oxide Synthase Bound to Nitro Indazole Reveals a Novel Inactivation<br>Mechanismâ€. Biochemistry, 2001, 40, 13448-13455.                                                                                                            | 2.5  | 78        |
| 53 | Crystallographic Studies on Endothelial Nitric Oxide Synthase Complexed with Nitric Oxide and Mechanism-Based Inhibitors. Biochemistry, 2001, 40, 5399-5406.                                                                                                    | 2.5  | 78        |
| 54 | New understandings of thermostable and peizostable enzymes. Current Opinion in Biotechnology, 2003, 14, 360-365.                                                                                                                                                | 6.6  | 78        |

| #  | Article                                                                                                                                                                                                                      | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Selective neuronal nitric oxide synthase inhibitors and the prevention of cerebral palsy. Annals of Neurology, 2009, 65, 209-217.                                                                                            | 5.3  | 78        |
| 56 | Ultrahigh (0.93Ã) resolution structure of manganese peroxidase from Phanerochaete chrysosporium:<br>Implications for the catalytic mechanism. Journal of Inorganic Biochemistry, 2010, 104, 683-690.                         | 3.5  | 78        |
| 57 | Crystal Structures of Substrate Binding Site Mutants of Manganese Peroxidase. Journal of Biological<br>Chemistry, 1997, 272, 17574-17580.                                                                                    | 3.4  | 77        |
| 58 | Crystal Structures of the Ferric, Ferrous, and Ferrous–NO Forms of the Asp140Ala Mutant of Human<br>Heme Oxygenase-1: Catalytic Implications. Journal of Molecular Biology, 2003, 330, 527-538.                              | 4.2  | 77        |
| 59 | Preliminary Characterization and Crystal Structure of a Thermostable Cytochrome P450 from Thermus thermophilus. Journal of Biological Chemistry, 2003, 278, 608-616.                                                         | 3.4  | 76        |
| 60 | Crystal Structures of Epothilone D-bound, Epothilone B-bound, and Substrate-free Forms of<br>Cytochrome P450epoK. Journal of Biological Chemistry, 2003, 278, 44886-44893.                                                   | 3.4  | 75        |
| 61 | Structural basis for dipeptide amide isoform-selective inhibition of neuronal nitric oxide synthase.<br>Nature Structural and Molecular Biology, 2004, 11, 54-59.                                                            | 8.2  | 75        |
| 62 | Crystallographic and Single-Crystal Spectral Analysis of the Peroxidase Ferryl Intermediate.<br>Biochemistry, 2010, 49, 2984-2986.                                                                                           | 2.5  | 75        |
| 63 | Identification of Two Electron-Transfer Sites in Ascorbate Peroxidase Using Chemical Modification,<br>Enzyme Kinetics, and Crystallography. Biochemistry, 1998, 37, 17610-17617.                                             | 2.5  | 74        |
| 64 | Crystal Structure of Putidaredoxin Reductase from Pseudomonas putida, the Final Structural<br>Component of the Cytochrome P450cam Monooxygenase. Journal of Molecular Biology, 2004, 336,<br>889-902.                        | 4.2  | 74        |
| 65 | Crystal Structure of Cytochrome P450cam Complexed with Its Catalytic Product,<br>5-exo-Hydroxycamphor. Journal of the American Chemical Society, 1995, 117, 6297-6299.                                                       | 13.7 | 72        |
| 66 | Structural biology of heme monooxygenases. Biochemical and Biophysical Research Communications, 2005, 338, 337-345.                                                                                                          | 2.1  | 70        |
| 67 | Substrate-assisted catalysis in cytochrome P450eryF. Nature Structural Biology, 1996, 3, 632-637.                                                                                                                            | 9.7  | 69        |
| 68 | Computer Modeling of Selective Regions in the Active Site of Nitric Oxide Synthases:  Implication for the Design of Isoform-Selective Inhibitors. Journal of Medicinal Chemistry, 2003, 46, 5700-5711.                       | 6.4  | 69        |
| 69 | Holo- and Apo-bound Structures of Bacterial Periplasmic Heme-binding Proteins. Journal of Biological<br>Chemistry, 2007, 282, 35796-35802.                                                                                   | 3.4  | 69        |
| 70 | Pyridine-Substituted Desoxyritonavir Is a More Potent Inhibitor of Cytochrome P450 3A4 than<br>Ritonavir. Journal of Medicinal Chemistry, 2013, 56, 3733-3741.                                                               | 6.4  | 68        |
| 71 | The Janus nature of heme. Natural Product Reports, 2007, 24, 504.                                                                                                                                                            | 10.3 | 66        |
| 72 | Substrate recognition sites in 14α-sterol demethylase from comparative analysis of amino acid<br>sequences and X-ray structure of Mycobacterium tuberculosis CYP51. Journal of Inorganic<br>Biochemistry, 2001, 87, 227-235. | 3.5  | 65        |

| #  | Article                                                                                                                                                                                                                        | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Putidaredoxin-to-Cytochrome P450cam Electron Transfer:Â Differences between the Two Reductive<br>Steps Required for Catalysisâ€. Biochemistry, 2006, 45, 11934-11944.                                                          | 2.5  | 65        |
| 74 | Crystal structure of the pristine peroxidase ferryl center and its relevance to proton-coupled<br>electron transfer. Proceedings of the National Academy of Sciences of the United States of America,<br>2016, 113, 1226-1231. | 7.1  | 65        |
| 75 | [2] Modeling of mammalian P450s on basis of P450cam x-ray structure. Methods in Enzymology, 1991,<br>206, 11-30.                                                                                                               | 1.0  | 64        |
| 76 | Crystal Structures of the NO- and CO-bound Heme Oxygenase from Neisseriae meningitidis. Journal of<br>Biological Chemistry, 2003, 278, 34654-34659.                                                                            | 3.4  | 64        |
| 77 | Electrostatic Control of the Tryptophan Radical in CytochromecPeroxidaseâ€,‡. Biochemistry, 2004, 43,<br>8826-8834.                                                                                                            | 2.5  | 61        |
| 78 | Crystal structure and characterization of a cytochrome c peroxidase-cytochrome c site-specific<br>cross-link. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101,<br>5940-5945.        | 7.1  | 55        |
| 79 | Potent, Highly Selective, and Orally Bioavailable <i>Gem</i> -Difluorinated Monocationic Inhibitors of<br>Neuronal Nitric Oxide Synthase. Journal of the American Chemical Society, 2010, 132, 14229-14238.                    | 13.7 | 55        |
| 80 | Cytochrome P450: molecular architecture, mechanism, and prospects for rational inhibitor design.<br>Pharmaceutical Research, 1988, 05, 67-75.                                                                                  | 3.5  | 54        |
| 81 | Preliminary Crystallographic Analysis of Manganese Peroxidase from Phanerochaete chrysosporium.<br>Journal of Molecular Biology, 1994, 238, 845-848.                                                                           | 4.2  | 54        |
| 82 | Crystal Structure of the Cytochrome P450cam Mutant That Exhibits the Same Spectral Perturbations<br>Induced by Putidaredoxin Binding. Journal of Biological Chemistry, 2004, 279, 42844-42849.                                 | 3.4  | 54        |
| 83 | Structures of Cytochrome P450 Enzymes. , 2005, , 87-114.                                                                                                                                                                       |      | 54        |
| 84 | Structural studies of constitutive nitric oxide synthases with diatomic ligands bound. Journal of<br>Biological Inorganic Chemistry, 2006, 11, 753-768.                                                                        | 2.6  | 54        |
| 85 | Interaction of human cytochrome P4503A4 with ritonavir analogs. Archives of Biochemistry and Biophysics, 2012, 520, 108-116.                                                                                                   | 3.0  | 54        |
| 86 | Crystal Structure of P450cin in a Complex with Its Substrate, 1,8-Cineole, a Close Structural<br>Homologue to d-Camphor, the Substrate for P450cam,. Biochemistry, 2004, 43, 9487-9494.                                        | 2.5  | 53        |
| 87 | Structural biology of redox partner interactions in P450cam monooxygenase: A fresh look at an old system. Archives of Biochemistry and Biophysics, 2011, 507, 66-74.                                                           | 3.0  | 52        |
| 88 | Structural variation in heme enzymes: a comparative analysis of peroxidase and P450 crystal structures. Structure, 1994, 2, 461-464.                                                                                           | 3.3  | 51        |
| 89 | Targeting Nitric Oxide Signaling with nNOS Inhibitors As a Novel Strategy for the Therapy and Prevention of Human Melanoma. Antioxidants and Redox Signaling, 2013, 19, 433-447.                                               | 5.4  | 51        |
| 90 | Crystal Structure of Human Heme Oxygenase-1 in a Complex with Biliverdinâ€. Biochemistry, 2004, 43, 3793-3801.                                                                                                                 | 2.5  | 50        |

| #   | Article                                                                                                                                                                                                          | IF   | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91  | Unexpected Binding Modes of Nitric Oxide Synthase Inhibitors Effective in the Prevention of a<br>Cerebral Palsy Phenotype in an Animal Model. Journal of the American Chemical Society, 2010, 132,<br>5437-5442. | 13.7 | 50        |
| 92  | STRUCTURAL AND FUNCTIONAL DIVERSITY IN HEME MONOOXYGENASES. Drug Metabolism and Disposition, 2005, 33, 10-18.                                                                                                    | 3.3  | 49        |
| 93  | Crystallization of recombinant human heme oxygenaseâ€1. Protein Science, 1998, 7, 1836-1838.                                                                                                                     | 7.6  | 48        |
| 94  | Heme-mediated oxygen activation in biology: cytochrome c oxidase and nitric oxide synthase. Current<br>Opinion in Chemical Biology, 1999, 3, 131-137.                                                            | 6.1  | 47        |
| 95  | Replacement of the Distal Glycine 139 Transforms Human Heme Oxygenase-1 into a Peroxidase. Journal of Biological Chemistry, 2000, 275, 34501-34507.                                                              | 3.4  | 47        |
| 96  | Crystal structure and preliminary functional analysis of the cytochrome c peroxidase His175Gln proximal ligand mutant. Journal of the American Chemical Society, 1991, 113, 7755-7757.                           | 13.7 | 46        |
| 97  | Probing the CytochromecPeroxidaseâ °CytochromecElectron Transfer Reaction Using Site Specific<br>Cross-Linkingâ€. Biochemistry, 1996, 35, 4837-4845.                                                             | 2.5  | 46        |
| 98  | The Putidaredoxin Reductase-Putidaredoxin Electron Transfer Complex. Journal of Biological<br>Chemistry, 2005, 280, 16135-16142.                                                                                 | 3.4  | 45        |
| 99  | Exploration of the Active Site of Neuronal Nitric Oxide Synthase by the Design and Synthesis of<br>Pyrrolidinomethyl 2-Aminopyridine Derivatives. Journal of Medicinal Chemistry, 2010, 53, 7804-7824.           | 6.4  | 45        |
| 100 | Anion-Dependent Stimulation of CYP3A4 Monooxygenase. Biochemistry, 2015, 54, 4083-4096.                                                                                                                          | 2.5  | 45        |
| 101 | Conformational selectivity in cytochrome P450 redox partner interactions. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 8723-8728.                                 | 7.1  | 45        |
| 102 | On the occurrence of cytochrome P450 in viruses. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 12343-12352.                                                        | 7.1  | 45        |
| 103 | The Domain Architecture of Cytochrome P450BM-3. Journal of Biological Chemistry, 1997, 272, 7915-7921.                                                                                                           | 3.4  | 43        |
| 104 | The role of quaternary interactions on the stability and activity of ascorbate peroxidase. Protein Science, 1998, 7, 2089-2098.                                                                                  | 7.6  | 43        |
| 105 | The Effects of an Engineered Cation Site on the Structure, Activity, and EPR Properties of CytochromecPeroxidaseâ€. Biochemistry, 1999, 38, 5538-5545.                                                           | 2.5  | 43        |
| 106 | Structural and biological studies on bacterial nitric oxide synthase inhibitors. Proceedings of the<br>National Academy of Sciences of the United States of America, 2013, 110, 18127-18131.                     | 7.1  | 43        |
| 107 | Effect of Redox Partner Binding on Cytochrome P450 Conformational Dynamics. Journal of the American Chemical Society, 2017, 139, 13193-13199.                                                                    | 13.7 | 43        |
| 108 | Crystallization of Cytochromes P450 and Substrate-Enzyme Interactions. Current Topics in Medicinal Chemistry, 2004, 4, 1789-1802.                                                                                | 2.1  | 43        |

| #   | Article                                                                                                                                                                                                           | IF   | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 109 | Role of the Linker Region Connecting the Reductase and Heme Domains in Cytochrome P450BM-3.<br>Biochemistry, 1995, 34, 11221-11226.                                                                               | 2.5  | 40        |
| 110 | The FMN to Heme Electron Transfer in Cytochrome P450BM-3. Journal of Biological Chemistry, 1999, 274, 36097-36106.                                                                                                | 3.4  | 40        |
| 111 | Role of Zinc in Isoform-Selective Inhibitor Binding to Neuronal Nitric Oxide Synthase,. Biochemistry, 2010, 49, 10803-10810.                                                                                      | 2.5  | 40        |
| 112 | Simplified 2-Aminoquinoline-Based Scaffold for Potent and Selective Neuronal Nitric Oxide Synthase<br>Inhibition. Journal of Medicinal Chemistry, 2014, 57, 1513-1530.                                            | 6.4  | 40        |
| 113 | Resonance Raman spectroscopy shows different temperature-dependent coordination equilibria for native horseradish and cytochrome c peroxidase. FEBS Letters, 1985, 190, 221-226.                                  | 2.8  | 39        |
| 114 | Preliminary crystallographic analysis of an enzyme involved in erythromycin biosynthesis:<br>Cytochrome P450eryF. Proteins: Structure, Function and Bioinformatics, 1994, 20, 197-201.                            | 2.6  | 39        |
| 115 | A Novel Heme and Peroxide-dependent Tryptophan–tyrosine Cross-link in a Mutant of Cytochrome c<br>Peroxidase. Journal of Molecular Biology, 2003, 328, 157-166.                                                   | 4.2  | 39        |
| 116 | Crystal structures of ferrous and ferrous–NO forms of verdoheme in a complex with human heme<br>oxygenase-1: catalytic implications for heme cleavage. Journal of Inorganic Biochemistry, 2004, 98,<br>1686-1695. | 3.5  | 39        |
| 117 | Structural Basis for Isoform-Selective Inhibition in Nitric Oxide Synthase. Accounts of Chemical Research, 2013, 46, 390-398.                                                                                     | 15.6 | 39        |
| 118 | Electrostatic Control of Isoform Selective Inhibitor Binding in Nitric Oxide Synthase. Biochemistry, 2016, 55, 3702-3707.                                                                                         | 2.5  | 39        |
| 119 | Laser Flash Induced Electron Transfer in P450cam Monooxygenase:Â Putidaredoxin<br>Reductaseâ^'Putidaredoxin Interactionâ€. Biochemistry, 2001, 40, 10592-10600.                                                   | 2.5  | 38        |
| 120 | Symmetric Double-Headed Aminopyridines, a Novel Strategy for Potent and Membrane-Permeable<br>Inhibitors of Neuronal Nitric Oxide Synthase. Journal of Medicinal Chemistry, 2011, 54, 2039-2048.                  | 6.4  | 38        |
| 121 | Nitric oxide synthase and structure-based inhibitor design. Nitric Oxide - Biology and Chemistry, 2017, 63, 68-77.                                                                                                | 2.7  | 38        |
| 122 | Isoform-Selective Substrates of Nitric Oxide Synthase. Journal of Medicinal Chemistry, 2003, 46, 2271-2274.                                                                                                       | 6.4  | 37        |
| 123 | Role of Electrostatics and Salt Bridges in Stabilizing the Compound I Radical in Ascorbate<br>Peroxidaseâ€. Biochemistry, 2005, 44, 14062-14068.                                                                  | 2.5  | 37        |
| 124 | Potent and Selective Double-Headed Thiophene-2-carboximidamide Inhibitors of Neuronal Nitric Oxide<br>Synthase for the Treatment of Melanoma. Journal of Medicinal Chemistry, 2014, 57, 686-700.                  | 6.4  | 37        |
| 125 | Electron Transfer between the FMN and Heme Domains of Cytochrome P450BM-3. Journal of Biological Chemistry, 1997, 272, 7922-7926.                                                                                 | 3.4  | 35        |
| 126 | The Critical Role of Substrate-Protein Hydrogen Bonding in the Control of Regioselective<br>Hydroxylation in P450cin. Journal of Biological Chemistry, 2008, 283, 10804-10812.                                    | 3.4  | 35        |

| #   | Article                                                                                                                                                                                                                                                | IF   | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 127 | Intramolecular hydrogen bonding: A potential strategy for more bioavailable inhibitors of neuronal nitric oxide synthase. Bioorganic and Medicinal Chemistry, 2012, 20, 2435-2443.                                                                     | 3.0  | 35        |
| 128 | Heme Binding Biguanides Target Cytochrome P450-Dependent Cancer Cell Mitochondria. Cell Chemical<br>Biology, 2017, 24, 1259-1275.e6.                                                                                                                   | 5.2  | 35        |
| 129 | Inhibition Mechanisms of Human Indoleamine 2,3 Dioxygenase 1. Journal of the American Chemical Society, 2018, 140, 8518-8525.                                                                                                                          | 13.7 | 35        |
| 130 | The homologous tryptophan critical for cytochrome c peroxidase function is not essential for ascorbate peroxidase activity. Journal of Biological Inorganic Chemistry, 1996, 1, 61-66.                                                                 | 2.6  | 34        |
| 131 | A study of the K+-site mutant of ascorbate peroxidase: mutations of protein residues on the proximal side of the heme cause changes in iron ligation on the distal side. Journal of Biological Inorganic Chemistry, 1999, 4, 64-72.                    | 2.6  | 34        |
| 132 | Electron Transfer between Cytochrome P450cin and Its FMN-containing Redox Partner, Cindoxin.<br>Journal of Biological Chemistry, 2007, 282, 27006-27011.                                                                                               | 3.4  | 34        |
| 133 | Structural Characterization and Kinetics of Nitric-oxide Synthase Inhibition by Novel N5-(Iminoalkyl)-<br>and N5-(Iminoalkenyl)-ornithines. Journal of Biological Chemistry, 2003, 278, 46789-46797.                                                   | 3.4  | 33        |
| 134 | Intermediates in P450 catalysis. Philosophical Transactions Series A, Mathematical, Physical, and<br>Engineering Sciences, 2005, 363, 793-806.                                                                                                         | 3.4  | 33        |
| 135 | Structures of human constitutive nitric oxide synthases. Acta Crystallographica Section D:<br>Biological Crystallography, 2014, 70, 2667-2674.                                                                                                         | 2.5  | 33        |
| 136 | Structure-based hypothesis on the activation of the CO-sensing transcription factor CooA. Acta<br>Crystallographica Section D: Biological Crystallography, 2007, 63, 282-287.                                                                          | 2.5  | 32        |
| 137 | Crystal Structure of Leishmania major Peroxidase and Characterization of the Compound I Tryptophan<br>Radical. Journal of Biological Chemistry, 2011, 286, 24608-24615.                                                                                | 3.4  | 32        |
| 138 | Calmodulin activates neuronal nitric oxide synthase by enabling transitions between conformational states. FEBS Letters, 2013, 587, 44-47.                                                                                                             | 2.8  | 32        |
| 139 | Substrate-Dependent Allosteric Regulation in Cytochrome P450cam (CYP101A1). Journal of the<br>American Chemical Society, 2018, 140, 16222-16228.                                                                                                       | 13.7 | 32        |
| 140 | Conversion of an Engineered Potassium-binding Site into a Calcium-selective Site in Cytochrome c<br>Peroxidase. Journal of Biological Chemistry, 1999, 274, 37827-37833.                                                                               | 3.4  | 31        |
| 141 | Exploring the Electron Transfer Properties of Neuronal Nitric-oxide Synthase by Reversal of the FMN<br>Redox Potential. Journal of Biological Chemistry, 2008, 283, 34762-34772.                                                                       | 3.4  | 31        |
| 142 | Crystal Structure of the Putidaredoxin Reductase·Putidaredoxin Electron Transfer Complex. Journal<br>of Biological Chemistry, 2010, 285, 13616-13620.                                                                                                  | 3.4  | 30        |
| 143 | Structures of the Neuronal and Endothelial Nitric Oxide Synthase Heme Domain<br>withd-Nitroarginine-Containing Dipeptide Inhibitors Boundâ€. Biochemistry, 2004, 43, 5181-5187.                                                                        | 2.5  | 29        |
| 144 | Structure-Based Design and Synthesis ofNω-Nitro-l-Arginine-Containing Peptidomimetics as Selective<br>Inhibitors of Neuronal Nitric Oxide Synthase. Displacement of the Heme Structural Water. Journal of<br>Medicinal Chemistry, 2007, 50, 2089-2099. | 6.4  | 29        |

| #   | Article                                                                                                                                                                                                                           | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | Optimization of Blood–Brain Barrier Permeability with Potent and Selective Human Neuronal Nitric<br>Oxide Synthase Inhibitors Having a 2-Aminopyridine Scaffold. Journal of Medicinal Chemistry, 2019, 62,<br>2690-2707.          | 6.4 | 29        |
| 146 | Probing the structure of the linker connecting the reductase and heme domains of cytochrome P450BMâ€3 using siteâ€directed mutagenesis. Protein Science, 1996, 5, 1389-1393.                                                      | 7.6 | 28        |
| 147 | Mapping the active site polarity in structures of endothelial nitric oxide synthase heme domain complexed with isothioureas. Journal of Inorganic Biochemistry, 2000, 81, 133-139.                                                | 3.5 | 28        |
| 148 | Putidaredoxin Reductase, a New Function for an Old Protein. Journal of Biological Chemistry, 2002, 277, 25831-25839.                                                                                                              | 3.4 | 28        |
| 149 | Nitrile in the Hole: Discovery of a Small Auxiliary Pocket in Neuronal Nitric Oxide Synthase Leading to the Development of Potent and Selective 2-Aminoquinoline Inhibitors. Journal of Medicinal Chemistry, 2017, 60, 3958-3978. | 6.4 | 28        |
| 150 | Ritonavir Analogues as a Probe for Deciphering the Cytochrome P450 3A4 Inhibitory Mechanism.<br>Current Topics in Medicinal Chemistry, 2014, 14, 1348-1355.                                                                       | 2.1 | 28        |
| 151 | Electron transfer in the ruthenated heme domain of cytochrome P450BM-3. Israel Journal of Chemistry, 2000, 40, 47-53.                                                                                                             | 2.3 | 27        |
| 152 | Novel 2,4-Disubstituted Pyrimidines as Potent, Selective, and Cell-Permeable Inhibitors of Neuronal<br>Nitric Oxide Synthase. Journal of Medicinal Chemistry, 2015, 58, 1067-1088.                                                | 6.4 | 27        |
| 153 | Engineering proteins, subcloning and hyperexpressing oxidoreductase genes. Protein Engineering,<br>Design and Selection, 1991, 4, 701-708.                                                                                        | 2.1 | 26        |
| 154 | Using Molecular Dynamics To Probe the Structural Basis for Enhanced Stability in Thermal Stable<br>Cytochromes P450. Biochemistry, 2010, 49, 6680-6686.                                                                           | 2.5 | 26        |
| 155 | Structures of Cytochrome P450 Enzymes. , 2015, , 3-32.                                                                                                                                                                            |     | 26        |
| 156 | Implications for Isoform-selective Inhibitor Design Derived from the Binding Mode of Bulky<br>Isothioureas to the Heme Domain of Endothelial Nitric-oxide Synthase. Journal of Biological<br>Chemistry, 2001, 276, 26486-26491.   | 3.4 | 25        |
| 157 | Structural Basis for Pterin Antagonism in Nitric-oxide Synthase. Journal of Biological Chemistry, 2001, 276, 49133-49141.                                                                                                         | 3.4 | 25        |
| 158 | Structure-Guided Design of Selective Inhibitors of Neuronal Nitric Oxide Synthase. Journal of<br>Medicinal Chemistry, 2013, 56, 3024-3032.                                                                                        | 6.4 | 25        |
| 159 | Double Barrel Shotgun Scanning of the Caveolin-1 Scaffolding Domain. ACS Chemical Biology, 2007, 2,<br>493-500.                                                                                                                   | 3.4 | 24        |
| 160 | <i>Leishmania major</i> Peroxidase Is a Cytochrome <i>c</i> Peroxidase. Biochemistry, 2012, 51, 2453-2460.                                                                                                                        | 2.5 | 24        |
| 161 | Pulsed Electron Paramagnetic Resonance Study of Domain Docking in Neuronal Nitric Oxide Synthase:<br>The Calmodulin and Output State Perspective. Journal of Physical Chemistry A, 2014, 118, 6864-6872.                          | 2.5 | 24        |
| 162 | 2-Aminopyridines with a Truncated Side Chain To Improve Human Neuronal Nitric Oxide Synthase<br>Inhibitory Potency and Selectivity. Journal of Medicinal Chemistry, 2015, 58, 5548-5560.                                          | 6.4 | 23        |

| #   | Article                                                                                                                                                                                                                                            | IF   | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 163 | Phenyl Ether- and Aniline-Containing 2-Aminoquinolines as Potent and Selective Inhibitors of Neuronal Nitric Oxide Synthase. Journal of Medicinal Chemistry, 2015, 58, 8694-8712.                                                                  | 6.4  | 23        |
| 164 | Potent and Selective Human Neuronal Nitric Oxide Synthase Inhibition by Optimization of the<br>2-Aminopyridine-Based Scaffold with a Pyridine Linker. Journal of Medicinal Chemistry, 2016, 59,<br>4913-4925.                                      | 6.4  | 23        |
| 165 | Ligand and Redox Partner Binding Generates a New Conformational State in Cytochrome P450cam<br>(CYP101A1). Journal of the American Chemical Society, 2019, 141, 2678-2683.                                                                         | 13.7 | 23        |
| 166 | Reversing enzyme specificity. Nature, 1989, 339, 580-581.                                                                                                                                                                                          | 27.8 | 22        |
| 167 | Engineering Ascorbate Peroxidase Activity into Cytochrome <i>c</i> Peroxidase. Biochemistry, 2008, 47, 10324-10332.                                                                                                                                | 2.5  | 22        |
| 168 | Single Crystal Structural and Absorption Spectral Characterizations of Nitric Oxide Synthase<br>Complexed with <i>N</i> <sup>ï‰</sup> -Hydroxy- <scp>l</scp> -arginine and Diatomic<br>Ligands <sup>,</sup> . Biochemistry, 2009, 48, 10246-10254. | 2.5  | 22        |
| 169 | Crystal Structures and Functional Characterization of Wild-Type CYP101D1 and Its Active Site Mutants.<br>Biochemistry, 2013, 52, 8898-8906.                                                                                                        | 2.5  | 22        |
| 170 | Helping copper find a home. , 1999, 6, 709-711.                                                                                                                                                                                                    |      | 21        |
| 171 | Crystal structure of the <i>Leishmania major</i> peroxidase–cytochrome <i>c</i> complex.<br>Proceedings of the National Academy of Sciences of the United States of America, 2012, 109,<br>18390-18394.                                            | 7.1  | 21        |
| 172 | Selective Monocationic Inhibitors of Neuronal Nitric Oxide Synthase. Binding Mode Insights from<br>Molecular Dynamics Simulations. Journal of the American Chemical Society, 2012, 134, 11559-11572.                                               | 13.7 | 21        |
| 173 | Nitric Oxide Synthase Inhibitors That Interact with Both Heme Propionate and Tetrahydrobiopterin<br>Show High Isoform Selectivity. Journal of Medicinal Chemistry, 2014, 57, 4382-4396.                                                            | 6.4  | 21        |
| 174 | Heme-Coordinating Inhibitors of Neuronal Nitric Oxide Synthase. Ironâ ''Thioether Coordination Is<br>Stabilized by Hydrophobic Contacts without Increased Inhibitor Potency. Journal of the American<br>Chemical Society, 2010, 132, 798-806.      | 13.7 | 20        |
| 175 | Geometric and electronic structures of the His–Fe(IV)=O and His–Fe(IV)–Tyr hemes of MauG. Journal of Biological Inorganic Chemistry, 2012, 17, 1241-1255.                                                                                          | 2.6  | 20        |
| 176 | Cation-Induced Stabilization of the Engineered Cation-Binding Loop in CytochromecPeroxidase (CcP)â€.<br>Biochemistry, 2002, 41, 2684-2693.                                                                                                         | 2.5  | 19        |
| 177 | Crystal Structures of Constitutive Nitric Oxide Synthases in Complex with De Novo Designed<br>Inhibitors. Journal of Medicinal Chemistry, 2009, 52, 2060-2066.                                                                                     | 6.4  | 19        |
| 178 | Structure-based design, synthesis, and biological evaluation of lipophilic-tailed monocationic<br>inhibitors of neuronal nitric oxide synthase. Bioorganic and Medicinal Chemistry, 2010, 18, 6526-6537.                                           | 3.0  | 19        |
| 179 | Crystal Structure of Cindoxin, the P450cin Redox Partner. Biochemistry, 2014, 53, 1435-1446.                                                                                                                                                       | 2.5  | 19        |
| 180 | The Mobility of a Conserved Tyrosine Residue Controls Isoform-Dependent Enzyme–Inhibitor<br>Interactions in Nitric Oxide Synthases. Biochemistry, 2014, 53, 5272-5279.                                                                             | 2.5  | 19        |

| #   | Article                                                                                                                                                                                                                 | IF   | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 181 | Communication between the Zinc and Tetrahydrobiopterin Binding Sites in Nitric Oxide Synthase.<br>Biochemistry, 2014, 53, 4216-4223.                                                                                    | 2.5  | 19        |
| 182 | Molecular dynamics of the <scp>P</scp> 450cam– <scp>P</scp> dx complex reveals complex stability and novel interface contacts. Protein Science, 2015, 24, 49-57.                                                        | 7.6  | 19        |
| 183 | Updating the Paradigm: Redox Partner Binding and Conformational Dynamics in Cytochromes P450.<br>Accounts of Chemical Research, 2022, 55, 373-380.                                                                      | 15.6 | 19        |
| 184 | The Effect of the Asn82Asp Mutation in Yeast Cytochrome c Peroxidase Studied by Proton NMR<br>Spectroscopy. FEBS Journal, 1994, 224, 81-87.                                                                             | 0.2  | 18        |
| 185 | Regiospecificity Determinants of Human Heme Oxygenase. Journal of Biological Chemistry, 2005, 280, 2797-2806.                                                                                                           | 3.4  | 18        |
| 186 | Exploring the Binding Conformations of Bulkier Dipeptide Amide Inhibitors in Constitutive Nitric<br>Oxide Synthasesâ€. Biochemistry, 2005, 44, 15222-15229.                                                             | 2.5  | 18        |
| 187 | Mechanism of the CO-sensing heme protein CooA: New insights from the truncated heme domain and UVRR spectroscopy. Journal of Inorganic Biochemistry, 2007, 101, 1776-1785.                                              | 3.5  | 18        |
| 188 | Peripheral but crucial: A hydrophobic pocket (Tyr706, Leu337, and Met336) for potent and selective<br>inhibition of neuronal nitric oxide synthase. Bioorganic and Medicinal Chemistry Letters, 2010, 20,<br>6258-6261. | 2.2  | 18        |
| 189 | Effect of DNA Binding on Geminate CO Recombination Kinetics in CO-sensing Transcription Factor CooA. Journal of Biological Chemistry, 2012, 287, 21729-21740.                                                           | 3.4  | 18        |
| 190 | Hydrophilic, Potent, and Selective 7-Substituted 2-Aminoquinolines as Improved Human Neuronal<br>Nitric Oxide Synthase Inhibitors. Journal of Medicinal Chemistry, 2017, 60, 7146-7165.                                 | 6.4  | 18        |
| 191 | NO news is good news. Structure, 1998, 6, 255-258.                                                                                                                                                                      | 3.3  | 17        |
| 192 | Structural Biology of P450-Oxy Complexes. Drug Metabolism Reviews, 2007, 39, 557-566.                                                                                                                                   | 3.6  | 17        |
| 193 | Synergistic Effects of Mutations in Cytochrome P450cam Designed To Mimic CYP101D1. Biochemistry, 2013, 52, 5396-5402.                                                                                                   | 2.5  | 17        |
| 194 | Elucidating nitric oxide synthase domain interactions by molecular dynamics. Protein Science, 2016, 25, 374-382.                                                                                                        | 7.6  | 17        |
| 195 | The past and present of P450cam structural biology. Biochemical and Biophysical Research<br>Communications, 2003, 312, 35-39.                                                                                           | 2.1  | 16        |
| 196 | Temperature-Dependent Spin Crossover in Neuronal Nitric Oxide Synthase Bound with the<br>Heme-Coordinating Thioether Inhibitors. Journal of the American Chemical Society, 2011, 133, 8326-8334.                        | 13.7 | 16        |
| 197 | Targeting Bacterial Nitric Oxide Synthase with Aminoquinoline-Based Inhibitors. Biochemistry, 2016, 55, 5587-5594.                                                                                                      | 2.5  | 16        |
| 198 | Crystal Structures of Substrate-Free and Nitrosyl Cytochrome P450cin: Implications for O2<br>Activation. Biochemistry, 2012, 51, 6623-6631.                                                                             | 2.5  | 15        |

| #   | Article                                                                                                                                                                                                                                           | IF   | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 199 | Structure-Based Design of Bacterial Nitric Oxide Synthase Inhibitors. Journal of Medicinal Chemistry, 2015, 58, 994-1004.                                                                                                                         | 6.4  | 15        |
| 200 | Nitric Oxide Synthase as a Target for Methicillin-Resistant Staphylococcus aureus. Chemistry and Biology, 2015, 22, 785-792.                                                                                                                      | 6.0  | 15        |
| 201 | Structures of gas-generating heme enzymes: Nitric oxide synthase and heme oxygenase. Advances in<br>Inorganic Chemistry, 2000, 51, 243-294.                                                                                                       | 1.0  | 14        |
| 202 | Human Heme Oxygenase Oxidation of 5- and 15-Phenylhemes. Journal of Biological Chemistry, 2004, 279, 42593-42604.                                                                                                                                 | 3.4  | 14        |
| 203 | Production and Characterization of a Functional Putidaredoxin Reductaseâ^'Putidaredoxin Covalent<br>Complex. Biochemistry, 2010, 49, 58-67.                                                                                                       | 2.5  | 14        |
| 204 | Cyclopropyl- and methyl-containing inhibitors of neuronal nitric oxide synthase. Bioorganic and Medicinal Chemistry, 2013, 21, 1333-1343.                                                                                                         | 3.0  | 14        |
| 205 | Crystal structure of the Pseudomonas aeruginosa cytoplasmic heme binding protein, Apo-PhuS.<br>Journal of Inorganic Biochemistry, 2013, 128, 131-136.                                                                                             | 3.5  | 14        |
| 206 | P450cin Active Site Water: Implications for Substrate Binding and Solvent Accessibility. Biochemistry, 2013, 52, 5039-5050.                                                                                                                       | 2.5  | 14        |
| 207 | First Contact: 7-Phenyl-2-Aminoquinolines, Potent and Selective Neuronal Nitric Oxide Synthase<br>Inhibitors That Target an Isoform-Specific Aspartate. Journal of Medicinal Chemistry, 2020, 63,<br>4528-4554.                                   | 6.4  | 14        |
| 208 | Crystal structures of the G139A, G139A?NO and G143H mutants of human heme oxygenase-1. A finely<br>tuned hydrogen-bonding network controls oxygenase versus peroxidase activity. Journal of<br>Biological Inorganic Chemistry, 2005, 10, 138-146. | 2.6  | 13        |
| 209 | Accessible Chiral Linker to Enhance Potency and Selectivity of Neuronal Nitric Oxide Synthase<br>Inhibitors. ACS Medicinal Chemistry Letters, 2014, 5, 56-60.                                                                                     | 2.8  | 13        |
| 210 | Rate of intramolecular reduction of ferryl iron in compound I of cytochrome c peroxidase. Journal of the American Chemical Society, 1990, 112, 7426-7428.                                                                                         | 13.7 | 12        |
| 211 | Methylated <i>N</i> <sup>ï‰</sup> -Hydroxy- <scp>l</scp> -arginine Analogues as Mechanistic Probes for<br>the Second Step of the Nitric Oxide Synthase-Catalyzed Reaction. Biochemistry, 2013, 52, 3062-3073.                                     | 2.5  | 12        |
| 212 | "Bind and Crawl―Association Mechanism of <i>Leishmania major</i> Peroxidase and Cytochrome<br><i>c</i> Revealed by Brownian and Molecular Dynamics Simulations. Biochemistry, 2015, 54, 7272-7282.                                                | 2.5  | 12        |
| 213 | Conformational Response of N-Terminally Truncated Cytochrome P450 3A4 to Ligand Binding in Solution. Biochemistry, 2019, 58, 3903-3910.                                                                                                           | 2.5  | 12        |
| 214 | Diatomic Ligand Discrimination by the Heme Oxygenases from Neisseria meningitidis and Pseudomonas aeruginosa. Journal of Biological Chemistry, 2007, 282, 1066-1071.                                                                              | 3.4  | 11        |
| 215 | Identification of Redox Partners and Development of a Novel Chimeric Bacterial Nitric Oxide Synthase for Structure Activity Analyses. Journal of Biological Chemistry, 2014, 289, 29437-29445.                                                    | 3.4  | 11        |
| 216 | A Comparative Analysis of the Effector Role of Redox Partner Binding in Bacterial P450s. Biochemistry, 2016, 55, 6517-6523.                                                                                                                       | 2.5  | 11        |

| #   | Article                                                                                                                                                                                                                                | IF   | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 217 | Improvement of Cell Permeability of Human Neuronal Nitric Oxide Synthase Inhibitors Using Potent<br>and Selective 2-Aminopyridine-Based Scaffolds with a Fluorobenzene Linker. Journal of Medicinal<br>Chemistry, 2017, 60, 9360-9375. | 6.4  | 11        |
| 218 | Chiral linkers to improve selectivity of double-headed neuronal nitric oxide synthase inhibitors.<br>Bioorganic and Medicinal Chemistry Letters, 2013, 23, 5674-5679.                                                                  | 2.2  | 10        |
| 219 | The Role of the DNA-Binding Domains in CooA Activationâ€. Biochemistry, 2006, 45, 7148-7153.                                                                                                                                           | 2.5  | 9         |
| 220 | Structures of P450 Proteins and Their Molecular Phylogeny. , 2007, , 57-96.                                                                                                                                                            |      | 9         |
| 221 | Enzymatic Mechanism of <i>Leishmania major</i> Peroxidase and the Critical Role of Specific Ionic<br>Interactions. Biochemistry, 2015, 54, 3328-3336.                                                                                  | 2.5  | 9         |
| 222 | Inhibitor Bound Crystal Structures of Bacterial Nitric Oxide Synthase. Biochemistry, 2015, 54, 4075-4082.                                                                                                                              | 2.5  | 9         |
| 223 | Mechanistic Studies of Inactivation of Inducible Nitric Oxide Synthase by Amidines. Biochemistry, 2015, 54, 2530-2538.                                                                                                                 | 2.5  | 9         |
| 224 | Improved Synthesis of Chiral Pyrrolidine Inhibitors and Their Binding Properties to Neuronal Nitric<br>Oxide Synthase. Journal of Medicinal Chemistry, 2011, 54, 6399-6403.                                                            | 6.4  | 8         |
| 225 | Proton Relay Network in the Bacterial P450s: CYP101A1 and CYP101D1. Biochemistry, 2020, 59, 2896-2902.                                                                                                                                 | 2.5  | 8         |
| 226 | In search of potent and selective inhibitors of neuronal nitric oxide synthase with more simple structures. Bioorganic and Medicinal Chemistry, 2013, 21, 5323-5331.                                                                   | 3.0  | 7         |
| 227 | Combination of chiral linkers with thiophenecarboximidamide heads to improve the selectivity of inhibitors of neuronal nitric oxide synthase. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 4504-4510.                         | 2.2  | 7         |
| 228 | The 1.13-Ã structure of iron-free cytochrome c peroxidase. Journal of Biological Inorganic Chemistry, 2005, 10, 425-430.                                                                                                               | 2.6  | 6         |
| 229 | Hydroxyl-terminated peptidomimetic inhibitors of neuronal nitric oxide synthase. Bioorganic and<br>Medicinal Chemistry, 2006, 14, 3681-3690.                                                                                           | 3.0  | 6         |
| 230 | Oxygen activation and redox partner binding in cytochromes P450. Biotechnology and Applied Biochemistry, 2013, 60, 128-133.                                                                                                            | 3.1  | 6         |
| 231 | Probing the Hydrogen Bonding of the Ferrous–NO Heme Center of nNOS by Pulsed Electron<br>Paramagnetic Resonance. Journal of Physical Chemistry A, 2015, 119, 6641-6649.                                                                | 2.5  | 6         |
| 232 | Mechanism of Inactivation of Neuronal Nitric Oxide Synthase by<br>(S)-2-Amino-5-(2-(methylthio)acetimidamido)pentanoic Acid. Journal of the American Chemical Society,<br>2015, 137, 5980-5989.                                        | 13.7 | 6         |
| 233 | Ultrafast CO Kinetics in Heme Proteins: Adiabatic Ligand Binding and Heavy Atom Tunneling. Journal of the American Chemical Society, 2017, 139, 15738-15747.                                                                           | 13.7 | 6         |
| 234 | Insights into the Dynamics and Dissociation Mechanism of a Protein Redox Complex Using Molecular<br>Dynamics. Journal of Chemical Information and Modeling, 2017, 57, 2344-2350.                                                       | 5.4  | 6         |

| #   | Article                                                                                                                                                                                             | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 235 | Testing the N-Terminal Velcro Model of CooA Carbon Monoxide Activation. Biochemistry, 2018, 57, 3059-3064.                                                                                          | 2.5 | 6         |
| 236 | Unexpected Differences between Two Closely Related Bacterial P450 Camphor Monooxygenases.<br>Biochemistry, 2020, 59, 2743-2750.                                                                     | 2.5 | 6         |
| 237 | Partial Opening of Cytochrome P450cam (CYP101A1) Is Driven by Allostery and Putidaredoxin Binding.<br>Biochemistry, 2021, 60, 2932-2942.                                                            | 2.5 | 6         |
| 238 | 2-Aminopyridines with a shortened amino sidechain as potent, selective, and highly permeable human neuronal nitric oxide synthase inhibitors. Bioorganic and Medicinal Chemistry, 2022, 69, 116878. | 3.0 | 6         |
| 239 | Coupling crystallography and computational biochemistry in understanding heme enzyme structure and function. International Journal of Quantum Chemistry, 2002, 88, 211-219.                         | 2.0 | 5         |
| 240 | Temperature, pH, and solvent isotope effects on cytochrome c peroxidase mutant N82A studied by proton NMR. The Protein Journal, 2000, 19, 535-542.                                                  | 1.1 | 4         |
| 241 | The crystal structure of chloroperoxidase: A heme peroxidase-cytochrome P450 functional hybrid.<br>Journal of Inorganic Biochemistry, 1995, 59, 427.                                                | 3.5 | 3         |
| 242 | [39] Approaches to crystallizing P450s. Methods in Enzymology, 1996, 272, 358-368.                                                                                                                  | 1.0 | 3         |
| 243 | Loop Stability in the Engineered Potassium Binding Site of Cytochrome c Peroxidase. Tetrahedron, 2000, 56, 9471-9475.                                                                               | 1.9 | 3         |
| 244 | Polymerase Translocation with Respect to Single-Stranded Nucleic Acid: Looping or Wrapping of<br>Primer around a Poly(A) Polymerase. Structure, 2009, 17, 680-689.                                  | 3.3 | 3         |
| 245 | Cytochrome P450 Dynamics. , 2014, , 75-94.                                                                                                                                                          |     | 3         |
| 246 | Effect of redox partner binding on CYP101D1 conformational dynamics. Journal of Inorganic<br>Biochemistry, 2018, 183, 179-183.                                                                      | 3.5 | 3         |
| 247 | Structural Basis for Isoform Selective Nitric Oxide Synthase Inhibition by<br>Thiophene-2-carboximidamides. Biochemistry, 2018, 57, 6319-6325.                                                      | 2.5 | 3         |
| 248 | Structural Insights on the Conversion of Cytochrome P450 to P420. ACS Omega, 2022, 7, 18481-18485.                                                                                                  | 3.5 | 3         |
| 249 | Dissecting binding of a β-barrel membrane protein by phage display. Molecular BioSystems, 2017, 13, 1438-1447.                                                                                      | 2.9 | 2         |
| 250 | Crystal structure and functional analysis of Leishmania major pseudoperoxidase. Journal of<br>Biological Inorganic Chemistry, 2017, 22, 919-927.                                                    | 2.6 | 2         |
| 251 | Dissecting the kinetics of the NADP+–FADH2 charge transfer complex and flavin semiquinones in neuronal nitric oxide synthase. Journal of Inorganic Biochemistry, 2013, 124, 1-10.                   | 3.5 | 1         |
| 252 | Domain-level rocking motion within a polymerase that translocates on single-stranded nucleic acid.<br>Acta Crystallographica Section D: Biological Crystallography, 2013, 69, 617-624.              | 2.5 | 1         |

| #   | Article                                                                                                                                                                                                                                     | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 253 | Structural analysis of P450 AmphL from Streptomyces nodosus provides insights into substrate<br>selectivity of polyene macrolide antibiotic biosynthetic P450s. Journal of Biological Chemistry, 2022,<br>298, 101746.                      | 3.4 | 1         |
| 254 | 1P157 Exploring the Binding Conformations of Bulkier Dipeptide Amide Inhibitors in Constitutive Nitric<br>Oxide Synthases(5. Heme protein,Poster Session,Abstract,Meeting Program of EABS & BSJ 2006).<br>Seibutsu Butsuri, 2006, 46, S186. | 0.1 | 0         |
| 255 | Neuronal Nitric Oxide Synthase (nNOS)/NO, An Accelerator of Melanoma Progression, is a Potential<br>Target for Chemoprevention. Free Radical Biology and Medicine, 2011, 51, S91-S92.                                                       | 2.9 | Ο         |
| 256 | Association Mechanism of Leishmania major Peroxidase and cytochrome c revealed through Brownian<br>and Molecular Dynamics. Biophysical Journal, 2016, 110, 42a.                                                                             | 0.5 | 0         |
| 257 | Structureâ€Based Hypothesis on the Activation of the COâ€sensing Transcription Factor CooA. FASEB Journal, 2007, 21, A670.                                                                                                                  | 0.5 | 0         |
| 258 | Computational analysis of the tryptophan cation radical energetics in peroxidase Compound I. Journal of Biological Inorganic Chemistry, 2022, 27, 229-237.                                                                                  | 2.6 | 0         |