Tara P Dasgupta

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5099470/publications.pdf

Version: 2024-02-01

687363 526287 63 859 13 27 citations h-index g-index papers 63 63 63 858 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	A Family of Active Iridium Catalysts for Transfer Hydrogenation of Ketones. Organometallics, 2006, 25, 4113-4117.	2.3	182
2	Kinetics and Mechanism of the Decomposition of S-Nitrosoglutathione by l-Ascorbic Acid and Copper lons in Aqueous Solution to Produce Nitric Oxide. Nitric Oxide - Biology and Chemistry, 2000, 4, 57-66.	2.7	93
3	Dynamics of pesticides in tropical conditions. 1. Kinetic studies of volatilization, hydrolysis, and photolysis of dieldrin and .alpha and .betaendosulfan. Journal of Agricultural and Food Chemistry, 1991, 39, 575-579.	5.2	49
4	Acrylamide in Caribbean foods – Residual levels and their relation to reducing sugar and asparagine content. Food Chemistry, 2012, 133, 451-457.	8.2	41
5	Kinetics and mechanism of aquation of carbonato complexes of cobalt(III). IV. Influence of ligand geometry on the acid-catalyzed hydrolytic ring-opening reactions of chelated tetraaminecarbonatocobalt(III) complex ions. Journal of the American Chemical Society, 1971, 93, 91-95.	13.7	36
6	Effects of S-Nitroso-N-acetyl-penicillamine Administration on Glucose Tolerance and Plasma Levels of Insulin and Glucagon in the Dog. Nitric Oxide - Biology and Chemistry, 2001, 5, 402-412.	2.7	36
7	Kinetics and mechanism of aquation of carbonato complexes of cobalt(III). I. Acid-catalyzed aquation of carbonatopentaamminecobalt(III) ion. Journal of the American Chemical Society, 1968, 90, 6360-6363.	13.7	29
8	Mixed-valence ions of ruthenium containing fumaronitrile and tetracyanoethylene as bridging groups. Inorganic Chemistry, 1983, 22, 1970-1975.	4.0	24
9	Mechanisms of nitric oxide release from nitrovasodilators in aqueous solution: reaction of the nitroprusside ion ([Fe(CN)5NO]2â^') with l-ascorbic acid. Journal of Inorganic Biochemistry, 2001, 87, 165-173.	3.5	23
10	Synthesis, properties, and crystallographic characterization of a dinuclear .mucarbonato complex of cobalt(III): [(NH3)3Co(.muOH)2(.muCO3)Co(NH3)3]SO4.5H2O. Inorganic Chemistry, 1981, 20, 376-381.	4.0	20
11	The Hyperglycemic Effect of S-Nitrosoglutathione in the Dog. Nitric Oxide - Biology and Chemistry, 1999, 3, 481-491.	2.7	19
12	Decreased insulin binding to mononuclear leucocytes and erythrocytes from dogs after S-nitroso-N-acetypenicillamine administration. BMC Biochemistry, 2002, 3, 1.	4.4	15
13	Kinetics and mechanism of the aquation of the trinuclear cation, $[\hat{1}43$ -oxo-triaqua-hexakis(acetato)tris(iron(III))]+in perchloric acid media. Inorganica Chimica Acta, 2005, 358, 3610-3616.	2.4	14
14	Kinetics and mechanism of aquation of carbonato complexes of cobalt(III). II. The acid-catalyzed aquation of carbonatotetraaminecobalt(III) ion. Journal of the American Chemical Society, 1969, 91, 3207-3211.	13.7	13
15	Binuclear complexes of transition metals containing carbonate ligands. Preparation, properties, and crystal structure of .muamidomuhydroxo-tetraamminebis(carbonato)dicobalt(III) pentahydrate. Inorganic Chemistry, 1979, 18, 2290-2295.	4.0	13
16	Dynamics of interaction of vitamin C with some potent nitrovasodilators, S-nitroso-N-acetyl-d,l-penicillamine (SNAP) and S-nitrosocaptopril (SNOCap), in aqueous solution. Biophysical Chemistry, 2004, 107, 117-131.	2.8	13
17	Title is missing!. Transition Metal Chemistry, 1997, 22, 135-140.	1.4	12
18	Reactions of S-nitrosothiols with l-ascorbic acid in aqueous solution. Methods in Enzymology, 2002, 359, 219-229.	1.0	12

#	Article	IF	CITATIONS
19	Kinetics and mechanism of the reduction of the molybdatopentaamminecobalt(III) ion by aqueous sulfite and aqueous potassium hexacyanoferrate(II). Inorganica Chimica Acta, 2002, 331, 279-289.	2.4	12
20	Kinetics and mechanism of the aquation of a series of mixed-metal oxo-centered trinuclear cations,		

#	Article	IF	CITATIONS
37	Dinuclear complexes of transition metals containing carbonate ligands. IV. Synthesis and characterization of some novel dinuclear complexes derived from the complex, μ-amido-μ-hydroxotetraamminebis(carbonato)cobalt(III). Inorganica Chimica Acta, 1985, 103, 57-61.	2.4	5
38	Dinuclear complexes of transition metals containing carbonate ligands. VIII. Kinetics and mechanism of carbon dioxide uptake by the tri-1¼-hydroxo-bis (1,5-diamino-3-aza-pentane)cobalt(III) ion in weakly basic aqueous carbonate solution. Inorganica Chimica Acta, 1987, 130, 185-188.	2.4	5
39	Kinetics of Dissociation of tris-{3-(2-pyridyl)-5,6-bis(2-furyl)-1,2,4-triazine}iron(II). Transition Metal Chemistry, 2005, 30, 957-963.	1.4	5
40	The reaction of S-nitroso-N-acetyl-d,l-penicillamine (SNAP) with the angiotensin converting enzyme inhibitor, captopril—mechanism of transnitrosation. Organic and Biomolecular Chemistry, 2005, 3, 1640.	2.8	5
41	In vitro studies on the reaction rates of acrylamide with the key body-fluid thiols l-cysteine, glutathione, and captopril. Toxicology Research, 2014, 3, 445-446.	2.1	5
42	Synthesis and characterization of oxalatobis(ethylenediamine)rhodium(III) nitrate. Inorganic Chemistry, 1970, 9, 2789-2791.	4.0	4
43	Syntheses, characterisation, infrared and 95Mo NMR spectroscopy of some coordinated oxo—molybdenum(VI) complexes. Inorganica Chimica Acta, 1997, 260, 225-228.	2.4	4
44	Transfer of nitric oxide from nitrovasodilators to free thiolsâ€"Evidence of two distinct stages. Biochemical and Biophysical Research Communications, 2005, 335, 730-733.	2.1	4
45	Oxygen exchange and acid hydrolysis reactivity of bis(ethylenediamine)oxalatorhodium(III) ion. Inorganic Chemistry, 1976, 15, 1477-1484.	4.0	3
46	Dinuclear complexes of transition metals containing carbonate ligands. V. Kinetics and mechanism of		

#	Article	IF	CITATIONS
55	Bioaccumulation of Polychlorinated Biphenyls (PCBs) in Atlantic Sea Bream (Archosargus) Tj ETQq1 1 0.784314 rg Toxicology, 2017, 99, 328-332.	gBT /Overlo 2.7	ock 10 Tf 5 2
56	Dinuclear complexes of transition metals containing carbonate ligands Part IX. Kinetics and mechanism of decarboxylation and formation of the μ-amido-μ-carbonato-bis(bis(ethylenediamine)cobalt(III)) ion in aqueous solution. Inorganica Chimica Acta, 1990, 167, 233-238.	2.4	1
57	Mechanism of the acid catalysed hydrolysis of the chromatopenta-amminecobalt(III) ion. Transition Metal Chemistry, 1992, 17, 409-412.	1.4	1
58	Solubilities and Transfer Chemical Potentials for Cobalt(III) Complexes in t-butanol– i-propanol–, and ethanol–water Mixtures. Transition Metal Chemistry, 2005, 30, 948-956.	1.4	1
59	Porous solvent-free ν42-bis(salicylidene)propane-1,3-diaminato]iron(III)}. Acta Crystallographica Section E: Structure Reports Online, 2005, 61, m1464-m1466.	0.2	1
60	The effect of nitric oxide on glucose metabolism. Molecular and Cellular Biochemistry, 2004, 263, 29-34.	3.1	1
61	Kinetics and mechanism of the reaction between the di- $\hat{1}$ /4-cyanobis[tetracyanoferrate(III)] complex ion and sulfite in aqueous solution. Inorganica Chimica Acta, 2007, 360, 2284-2290.	2.4	O
62	Dynamic studies of transnitrosation of thiols of biological importance by the nitrosated $4,48\in^2,48\in^3,48\in^2$ at e^2	2009,	0
63	Kinetics and Mechanisms of the Reduction of Chromium(VI) by 2-Mercaptoethanesulfonic Acid in Aqueous Solution: Difference in the Mechanistic Process of Reduction with Noncarboxylate Thiols. Bioinorganic Reaction Mechanisms, 2003, 5, 47-57.	0.4	O