Renfu Zhuo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5099214/publications.pdf Version: 2024-02-01

RENEU ZHUO

#	Article	lF	CITATIONS
1	Well-dispersed tin nanoparticles encapsulated in amorphous carbon tubes as high-performance anode for lithium ion batteries. Nanotechnology, 2021, 32, 145402.	2.6	9
2	Enhanced supercapacitive properties of hydrohausmannite by in-situ polymerization of polypyrrole. Electrochimica Acta, 2021, 376, 137989.	5.2	7
3	Supercapacitive properties of MnO2 and underlying kinetics by distribution of relaxation time method. Journal of Power Sources, 2020, 474, 228667.	7.8	8
4	Enhanced microwave absorption properties in C band of Ni/C porous nanofibers prepared by electrospinning. Journal of Alloys and Compounds, 2019, 800, 294-304.	5.5	43
5	The novel amorphous SnS /RGO anode material with better cycling stability and superior rate performance. Electrochimica Acta, 2019, 305, 394-402.	5.2	7
6	SnO 2 /graphene oxide composite material with high rate performance applied in lithium storage capacity. Electrochimica Acta, 2018, 264, 61-68.	5.2	45
7	Large-size and high performance visible-light photodetectors based on two-dimensional hybrid materials SnS/RGO. RSC Advances, 2018, 8, 761-766.	3.6	42
8	Microwave absorption properties of 3D cross-linked Fe/C porous nanofibers prepared by electrospinning. Carbon, 2018, 134, 264-273.	10.3	270
9	Preparation of mono-dispersed, high energy release, core/shell structure Al nanopowders and their application in HTPB propellant as combustion enhancers. Scientific Reports, 2017, 7, 5228.	3.3	18
10	3D Flower-Like Hierarchitectures Constructed by SnS/SnS ₂ Heterostructure Nanosheets for High-Performance Anode Material in Lithium-Ion Batteries. Journal of Nanomaterials, 2015, 2015, 1-5.	2.7	4
11	Design and influence of mass ratio on supercapacitive properties of ternary electrode material reduced graphene oxide@MnO2@ poly(3,4-ethylenedioxythiophene)-poly(styrene sulfonate). Electrochimica Acta, 2015, 169, 317-325.	5.2	32
12	Influence of microstructure on electrochemical properties of Si/C multilayer thin-film anodes deposited using a sputtering method. Materials Letters, 2015, 160, 210-212.	2.6	9
13	Temperature-dependent growth, photoluminescence and ferromagnetic properties of Co-doped AIN hexagonal nanostructures. Materials Letters, 2015, 142, 106-108.	2.6	10
14	Effect of Mg doping on growth and photoluminescence of AlN hexagonal nanorods. Journal of Alloys and Compounds, 2015, 624, 241-246.	5.5	18
15	Structure and optical investigation of faceted hexagonal aluminum nitride nanotube arrays. Applied Physics Express, 2014, 7, 065003.	2.4	4
16	One-step synthesis and excellent microwave absorption of hierarchical tree-like ZnO nanostructures. Materials Letters, 2014, 117, 34-36.	2.6	19
17	Synthesis and electrochemical properties of multilayered porous hexagonal Mn(OH) 2 nanoplates as supercapacitor electrode material. Materials Letters, 2014, 136, 7-10.	2.6	13
18	Effect of temperature on growth and ultraviolet photoluminescence of Zn doped AlN nanostructures. Materials Letters, 2014, 136, 95-98.	2.6	11

Renfu Zhuo

#	Article	IF	CITATIONS
19	Manganese dioxide nanosheet arrays grown on graphene oxide as an advanced electrode material for supercapacitors. Electrochimica Acta, 2014, 117, 528-533.	5.2	78
20	Hydrothermal synthesis and electrochemical properties of hexagonal hydrohausmannite plates as supercapacitor electrode material. Materials Letters, 2014, 117, 62-65.	2.6	13
21	Stannous sulfide/multi-walled carbon nanotube hybrids as high-performance anode materials of lithium-ion batteries. Electrochimica Acta, 2014, 136, 355-362.	5.2	36
22	Synthesis and electrochemical properties of MnO2/rGO/PEDOT:PSS ternary composite electrode material for supercapacitors. Materials Letters, 2014, 127, 53-55.	2.6	61
23	One-pot synthesis of ZnS hollow spheres via a low-temperature, template-free hydrothermal route. CrystEngComm, 2013, 15, 1571.	2.6	37
24	Design, hydrothermal synthesis and electrochemical properties of porous birnessite-type manganese dioxide nanosheets on graphene as a hybrid material for supercapacitors. Journal of Power Sources, 2013, 242, 78-85.	7.8	99
25	Growth of AIN hexagonal oriented complex nanostructures induced by nucleus arrangement. CrystEngComm, 2011, 13, 5198.	2.6	12
26	Two-dimensional hexagonal SnS2 nanoflakes: fabrication, characterization, and growth mechanism. Applied Physics A: Materials Science and Processing, 2011, 103, 413-419.	2.3	35
27	Fabrication, In-Depth Characterization, and Formation Mechanism of Crystalline Porous Birnessite MnO ₂ Film with Amorphous Bottom Layers by Hydrothermal Method. Crystal Growth and Design, 2009, 9, 218-222.	3.0	101
28	Structure and photoluminescence property of Eu-doped SnO ₂ nanocrystalline powders fabricated by sol–gel calcination process. Journal Physics D: Applied Physics, 2008, 41, 105306.	2.8	45