Joerg Heeren

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5099135/publications.pdf Version: 2024-02-01

LOEDC HEEDEN

#	Article	IF	CITATIONS
1	Replication of SARS-CoV-2 in adipose tissue determines organ and systemic lipid metabolism in hamsters and humans. Cell Metabolism, 2022, 34, 1-2.	7.2	37
2	Susceptibility to diet-induced obesity at thermoneutral conditions is independent of UCP1. American Journal of Physiology - Endocrinology and Metabolism, 2022, 322, E85-E100.	1.8	14
3	A Gas Chromatography Mass Spectrometry-Based Method for the Quantification of Short Chain Fatty Acids. Metabolites, 2022, 12, 170.	1.3	10
4	Metabolic Turnover Studies to Quantify Energy Uptake by Thermogenic Adipose Tissues of Mice. Methods in Molecular Biology, 2022, 2448, 107-118.	0.4	1
5	Role of Endothelial Cell Lipoprotein Lipase for Brown Adipose Tissue Lipid and Glucose Handling. Frontiers in Physiology, 2022, 13, 859671.	1.3	2
6	Lysosomal acid lipase promotes endothelial proliferation in cold-activated adipose tissue. Adipocyte, 2022, 11, 28-33.	1.3	3
7	Cold-Induced Lipoprotein Clearance in Cyp7b1-Deficient Mice. Frontiers in Cell and Developmental Biology, 2022, 10, 836741.	1.8	2
8	Functional changes of the gastric bypass microbiota reactivate thermogenic adipose tissue and systemic glucose control via intestinal FXR-TGR5 crosstalk in diet-induced obesity. Microbiome, 2022, 10, .	4.9	32
9	Aryl Hydrocarbon Receptor Activity in Hepatocytes Sensitizes to Hyperacute Acetaminophen-Induced Hepatotoxicity in Mice. Cellular and Molecular Gastroenterology and Hepatology, 2021, 11, 371-388.	2.3	11
10	CD38 downregulation modulates NAD+ and NADP(H) levels in thermogenic adipose tissues. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2021, 1866, 158819.	1.2	18
11	Endogenous Fatty Acid Synthesis Drives Brown Adipose Tissue Involution. Cell Reports, 2021, 34, 108624.	2.9	33
12	Comment on "Mice Lacking the Purinergic Receptor P2X5 Exhibit Defective Inflammasome Activation and Early Susceptibility to <i>Listeria monocytogenes</i> ― Journal of Immunology, 2021, 206, 667-667.	0.4	1
13	Lysosomal lipoprotein processing in endothelial cells stimulates adipose tissue thermogenic adaptation. Cell Metabolism, 2021, 33, 547-564.e7.	7.2	48
14	Endothelial Lipase Is Involved in Cold-Induced High-Density Lipoprotein Turnover and Reverse Cholesterol Transport in Mice. Frontiers in Cardiovascular Medicine, 2021, 8, 628235.	1.1	9
15	TFEB deficiency attenuates mitochondrial degradation upon brown adipose tissue whitening at thermoneutrality. Molecular Metabolism, 2021, 47, 101173.	3.0	17
16	Role of bile acids in inflammatory liver diseases. Seminars in Immunopathology, 2021, 43, 577-590.	2.8	45
17	Metabolic-associated fatty liver disease and lipoprotein metabolism. Molecular Metabolism, 2021, 50, 101238.	3.0	195
18	Isthmin 1 — a novel insulin-like adipokine. Nature Reviews Endocrinology, 2021, 17, 709-710.	4.3	7

#	Article	IF	CITATIONS
19	Oxysterol 7-α Hydroxylase (CYP7B1) Attenuates Metabolic-Associated Fatty Liver Disease in Mice at Thermoneutrality. Cells, 2021, 10, 2656.	1.8	10
20	Role of CD38 in Adipose Tissue: Tuning Coenzyme Availability?. Nutrients, 2021, 13, 3734.	1.7	2
21	Dual NADPH oxidases DUOX1 and DUOX2 synthesize NAADP and are necessary for Ca ²⁺ signaling during T cell activation. Science Signaling, 2021, 14, eabe3800.	1.6	28
22	Alterations of the bile microbiome in primary sclerosing cholangitis. Gut, 2020, 69, 665-672.	6.1	80
23	Annexin A6 modulates TBC1D15/Rab7/StARD3 axis to control endosomal cholesterol export in NPC1 cells. Cellular and Molecular Life Sciences, 2020, 77, 2839-2857.	2.4	54
24	The P2X7 ion channel is dispensable for energy and metabolic homeostasis of white and brown adipose tissues. Purinergic Signalling, 2020, 16, 529-542.	1.1	6
25	Thermoneutrality-Induced Macrophage Accumulation in Brown Adipose Tissue Does Not Impair the Tissue's Competence for Cold-Induced Thermogenic Recruitment. Frontiers in Endocrinology, 2020, 11, 568682.	1.5	10
26	Brown adipose tissue lipoprotein and glucose disposal is not determined by thermogenesis in uncoupling protein 1-deficient mice. Journal of Lipid Research, 2020, 61, 1377-1389.	2.0	15
27	Inulin Supplementation Disturbs Hepatic Cholesterol and Bile Acid Metabolism Independent from Housing Temperature. Nutrients, 2020, 12, 3200.	1.7	12
28	Apolipoprotein E4 disrupts the neuroprotective action of sortilin in neuronal lipid metabolism and endocannabinoid signaling. Alzheimer's and Dementia, 2020, 16, 1248-1258.	0.4	18
29	A MAFG-IncRNA axis links systemic nutrient abundance to hepatic glucose metabolism. Nature Communications, 2020, 11, 644.	5.8	29
30	Novel Adipose Tissue Targets to Prevent and Treat Atherosclerosis. Handbook of Experimental Pharmacology, 2020, , 1.	0.9	1
31	Lysosomal integral membrane protein-2 (LIMP-2/SCARB2) is involved in lysosomal cholesterol export. Nature Communications, 2019, 10, 3521.	5.8	99
32	The endocrine function of adipose tissues in health and cardiometabolic disease. Nature Reviews Endocrinology, 2019, 15, 507-524.	4.3	393
33	Liver infiltrating T cells regulate bile acid metabolism in experimental cholangitis. Journal of Hepatology, 2019, 71, 783-792.	1.8	26
34	Thyroid-Hormone-Induced Browning of White Adipose Tissue Does Not Contribute to Thermogenesis and Glucose Consumption. Cell Reports, 2019, 27, 3385-3400.e3.	2.9	76
35	PID1 regulates insulin-dependent glucose uptake by controlling intracellular sorting of GLUT4-storage vesicles. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2019, 1865, 1592-1603.	1.8	11
36	Effects of Pharmacological Thermogenic Adipocyte Activation on Metabolism and Atherosclerotic Plaque Regression. Nutrients, 2019, 11, 463.	1.7	10

#	Article	IF	CITATIONS
37	Intact innervation is essential for diet-induced recruitment of brown adipose tissue. American Journal of Physiology - Endocrinology and Metabolism, 2019, 316, E487-E503.	1.8	54
38	Lrp1 in osteoblasts controls osteoclast activity and protects against osteoporosis by limiting PDGF–RANKL signaling. Bone Research, 2018, 6, 4.	5.4	45
39	Introduction to the special issue on dietary control of immunometabolism. Seminars in Immunopathology, 2018, 40, 141-144.	2.8	2
40	Brown adipose tissue and lipid metabolism. Current Opinion in Lipidology, 2018, 29, 180-185.	1.2	75
41	Regulation of immunometabolism in adipose tissue. Seminars in Immunopathology, 2018, 40, 189-202.	2.8	40
42	Dietary protein restriction reduces circulating VLDL triglyceride levels via CREBH-APOA5–dependent and –independent mechanisms. JCI Insight, 2018, 3, .	2.3	42
43	Naturally Occurring Variants in LRP1 (Low-Density Lipoprotein Receptor–Related Protein 1) Affect HDL (High-Density Lipoprotein) Metabolism Through ABCA1 (ATP-Binding Cassette A1) and SR-B1 (Scavenger) Tj ET	Qq110.78	84314 rgBT /O
44	Lipolysis Triggers a Systemic Insulin Response Essential for Efficient Energy Replenishment of Activated Brown Adipose Tissue in Mice. Cell Metabolism, 2018, 28, 644-655.e4.	7.2	129
45	The adaptor protein PID1 regulates receptor-dependent endocytosis of postprandial triglyceride-rich lipoproteins. Molecular Metabolism, 2018, 16, 88-99.	3.0	45
46	Altered hepatic glucose homeostasis in AnxA6-KO mice fed a high-fat diet. PLoS ONE, 2018, 13, e0201310.	1.1	18
47	Assessment of Uptake and Biodistribution of Radiolabeled Cholesterol in Mice Using Gavaged Recombinant Triglyceride-rich Lipoprotein Particles (rTRL). Bio-protocol, 2018, 8, e2916.	0.2	0
48	Metabolite profiling: development and application of an UHR-QTOF-MS(/MS) method approach for the assessment of metabolic changes in high fat diet fed mice. Metabolomics, 2017, 13, 1.	1.4	2
49	Next-generation in vivo optical imaging with short-wave infrared quantum dots. Nature Biomedical Engineering, 2017, 1, .	11.6	490
50	Thermogenic adipocytes promote HDL turnover and reverse cholesterol transport. Nature Communications, 2017, 8, 15010.	5.8	117
51	The TMAO-Producing Enzyme Flavin-Containing Monooxygenase 3 Regulates Obesity and the Beiging of White Adipose Tissue. Cell Reports, 2017, 19, 2451-2461.	2.9	194
52	Cold-induced conversion of cholesterol to bile acids in mice shapes the gut microbiome and promotes adaptive thermogenesis. Nature Medicine, 2017, 23, 839-849.	15.2	225
53	Cold-Induced Brown Adipose Tissue Activity Alters Plasma Fatty Acids and Improves Glucose Metabolism in Men. Journal of Clinical Endocrinology and Metabolism, 2017, 102, 4226-4234.	1.8	96
54	The TREM2-APOE Pathway Drives the Transcriptional Phenotype of Dysfunctional Microglia in Neurodegenerative Diseases. Immunity, 2017, 47, 566-581.e9.	6.6	1,741

#	Article	IF	CITATIONS
55	Metabolic Circuit Involving Free Fatty Acids, microRNA 122, and Triglyceride Synthesis in Liver and Muscle Tissues. Gastroenterology, 2017, 153, 1404-1415.	0.6	80
56	Quantification of Bone Fatty Acid Metabolism and Its Regulation by Adipocyte Lipoprotein Lipase. International Journal of Molecular Sciences, 2017, 18, 1264.	1.8	38
57	Novel Mouse Models of Methylmalonic Aciduria Recapitulate Phenotypic Traits with a Genetic Dosage Effect. Journal of Biological Chemistry, 2016, 291, 20563-20573.	1.6	35
58	Implications of thermogenic adipose tissues for metabolic health. Best Practice and Research in Clinical Endocrinology and Metabolism, 2016, 30, 487-496.	2.2	11
59	Exosomal microRNA miR-92a concentration in serum reflects human brown fat activity. Nature Communications, 2016, 7, 11420.	5.8	137
60	Insulin Regulates Hepatic Triglyceride Secretion and Lipid Content via Signaling in the Brain. Diabetes, 2016, 65, 1511-1520.	0.3	49
61	FGF21 Lowers Plasma Triglycerides by Accelerating Lipoprotein Catabolism in White and Brown Adipose Tissues. Cell Metabolism, 2016, 23, 441-453.	7.2	188
62	Metabolic interplay between white, beige, brown adipocytes and the liver. Journal of Hepatology, 2016, 64, 1176-1186.	1.8	131
63	Endocannabinoid regulation in white and brown adipose tissue following thermogenic activation. Journal of Lipid Research, 2016, 57, 464-473.	2.0	57
64	Utilizing immunoaffinity chromatography (IAC) cross-reactivity in GC–MS/MS exemplified at the measurement of prostaglandin E1 in human plasma using prostaglandin E2-specific IAC columns. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2016, 1021, 101-107.	1.2	6
65	Stimulation of soluble guanylyl cyclase protects against obesity by recruiting brown adipose tissue. Nature Communications, 2015, 6, 7235.	5.8	85
66	Diabetes prevalence in NZO females depends on estrogen action on liver fat content. American Journal of Physiology - Endocrinology and Metabolism, 2015, 309, E968-E980.	1.8	16
67	Nanoparticle-based autoantigen delivery to Treg-inducing liver sinusoidal endothelial cells enables control of autoimmunity in mice. Journal of Hepatology, 2015, 62, 1349-1356.	1.8	145
68	Brown fat activation reduces hypercholesterolaemia and protects from atherosclerosis development. Nature Communications, 2015, 6, 6356.	5.8	360
69	Apolipoprotein E promotes lipid accumulation and differentiation in human adipocytes. Experimental Cell Research, 2015, 337, 94-102.	1.2	22
70	The fate of a designed protein corona on nanoparticles in vitro and in vivo. Beilstein Journal of Nanotechnology, 2015, 6, 36-46.	1.5	48
71	Lrp1/ <scp>LDL</scp> Receptor Play Critical Roles in Mannose 6â€Phosphateâ€Independent Lysosomal Enzyme Targeting. Traffic, 2015, 16, 743-759.	1.3	52
72	Genetic Dissection of Tissue-Specific Apolipoprotein E Function for Hypercholesterolemia and Diet-Induced Obesity. PLoS ONE, 2015, 10, e0145102.	1,1	16

#	Article	IF	CITATIONS
73	ANGPTL4 mediates shuttling of lipid fuel to brown adipose tissue during sustained cold exposure. ELife, 2015, 4, .	2.8	100
74	The cell-type specific uptake of polymer-coated or micelle-embedded QDs and SPIOs does not provoke an acute pro-inflammatory response in the liver. Beilstein Journal of Nanotechnology, 2014, 5, 1432-1440.	1.5	13
75	Dichloroacetate prevents restenosis in preclinical animal models of vessel injury. Nature, 2014, 509, 641-644.	13.7	78
76	Adipose tissue browning and metabolic health. Nature Reviews Endocrinology, 2014, 10, 24-36.	4.3	882
77	A liquid chromatography-tandem mass spectrometry-based method for the simultaneous determination of hydroxy sterols and bile acids. Journal of Chromatography A, 2014, 1371, 184-195.	1.8	60
78	TGF-β-dependent induction of CD4+CD25+Foxp3+ Tregs by liver sinusoidal endothelial cells. Journal of Hepatology, 2014, 61, 594-599.	1.8	185
79	Hepatic lipase is expressed by osteoblasts and modulates bone remodeling in obesity. Bone, 2014, 62, 90-98.	1.4	9
80	Cholesterol Regulates Syntaxin 6 Trafficking at trans-Golgi Network Endosomal Boundaries. Cell Reports, 2014, 7, 883-897.	2.9	104
81	Homozygosity for a partial deletion of apoprotein A-V signal peptide results in intracellular missorting of the protein and chylomicronemia in a breast-fed infant. Atherosclerosis, 2014, 233, 97-103.	0.4	24
82	Novel Aspects of Brown Adipose Tissue Biology. Endocrinology and Metabolism Clinics of North America, 2013, 42, 89-107.	1.2	35
83	Effects of adipocyte lipoprotein lipase on de novo lipogenesis and white adipose tissue browning. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2013, 1831, 934-942.	1.2	46
84	De novo lipogenesis in human fat and liver is linked to ChREBP-Î ² and metabolic health. Nature Communications, 2013, 4, 1528.	5.8	241
85	The holy grail of metabolic disease. Current Opinion in Lipidology, 2012, 23, 190-195.	1.2	61
86	Nanocrystals, a New Tool to Study Lipoprotein Metabolism and Atherosclerosis. Current Pharmaceutical Biotechnology, 2012, 13, 365-372.	0.9	10
87	The role of Apolipoprotein E in bone metabolism. Bone, 2012, 50, 518-524.	1.4	27
88	Impaired LDL Receptor-Related Protein 1 Translocation Correlates with Improved Dyslipidemia and Atherosclerosis in apoE-Deficient Mice. PLoS ONE, 2012, 7, e38330.	1.1	26
89	A new, powerful player in lipoprotein metabolism: brown adipose tissue. Journal of Molecular Medicine, 2012, 90, 887-893.	1.7	39
90	Low Density Lipoprotein Receptor-Related Protein 1 Dependent Endosomal Trapping and Recycling of Apolipoprotein E. PLoS ONE, 2012, 7, e29385.	1.1	48

#	Article	IF	CITATIONS
91	The GTPase ARFRP1 controls assembly of apoA1 to and lipidation of chylomicron in the Golgi of intestinal enterocyte. FASEB Journal, 2012, 26, 242.5.	0.2	0
92	Apolipoprotein A-V; a potent triglyceride reducer. Atherosclerosis, 2011, 219, 15-21.	0.4	101
93	Brown adipose tissue activity controls triglyceride clearance. Nature Medicine, 2011, 17, 200-205.	15.2	1,367
94	Apolipoprotein E-dependent inverse regulation of vertebral bone and adipose tissue mass in C57Bl/6 mice: Modulation by diet-induced obesity. Bone, 2010, 47, 736-745.	1.4	46
95	Hypertriglyceridemia in obese subjects: Caused by reduced apolipoprotein A5 plasma levels?. Atherosclerosis, 2010, 212, 386-387.	0.4	2
96	Real-time magnetic resonance imaging and quantification of lipoprotein metabolism in vivo using nanocrystals. Nature Nanotechnology, 2009, 4, 193-201.	15.6	159
97	Insulin stimulates hepatic low density lipoprotein receptor-related protein 1 (LRP1) to increase postprandial lipoprotein clearance. Atherosclerosis, 2009, 204, 105-111.	0.4	86
98	Liver TAG Transiently Decreases While PL nâ€3 and nâ€6 Fatty Acids are Persistently Elevated in Insulin Resistant Mice. Lipids, 2008, 43, 1039-1051.	0.7	18
99	Characterization of lipid metabolism in insulin-sensitive adipocytes differentiated from immortalized human mesenchymal stem cells. Experimental Cell Research, 2008, 314, 814-824.	1.2	27
100	Uptake of postprandial lipoproteins into bone in vivo: Impact on osteoblast function. Bone, 2008, 43, 230-237.	1.4	77
101	Apolipoprotein E Recycling. Arteriosclerosis, Thrombosis, and Vascular Biology, 2006, 26, 442-448.	1.1	115
102	Apolipoprotein AV Accelerates Plasma Hydrolysis of Triglyceriderich Lipoproteins by Interaction with Proteoglycan-bound Lipoprotein Lipase. Journal of Biological Chemistry, 2005, 280, 21553-21560.	1.6	253
103	Scavenger Receptor Class B Type I Mediates the Selective Uptake of High-Density Lipoprotein–Associated Cholesteryl Ester by the Liver in Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2005, 25, 143-148.	1.1	105
104	Give me A5 for lipoprotein hydrolysis!. Journal of Clinical Investigation, 2005, 115, 2694-2696.	3.9	81
105	Endothelial-derived lipoprotein lipase is bound to postprandial triglyceride-rich lipoproteins and mediates their hepatic clearance in vivo. Journal of Molecular Medicine, 2002, 80, 576-584.	1.7	59