
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5099084/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Tracking the time course of sign recognition using ERP repetition priming. Psychophysiology, 2022, 59, e13975.	2.4	4
2	The effects of multiple linguistic variables on picture naming in American Sign Language. Behavior Research Methods, 2022, 54, 2502-2521.	4.0	5
3	Contribution of Lexical Quality and Sign Language Variables to Reading Comprehension. Journal of Deaf Studies and Deaf Education, 2022, 27, 355-372.	1.2	9
4	Lexical selection in bimodal bilinguals: ERP evidence from picture-word interference. Language, Cognition and Neuroscience, 2021, 36, 840-853.	1.2	6
5	Effects of deafness and sign language experience on the human brain: voxel-based and surface-based morphometry. Language, Cognition and Neuroscience, 2021, 36, 422-439.	1.2	8
6	Multimodal imaging of brain reorganization in hearing late learners of sign language. Human Brain Mapping, 2021, 42, 384-397.	3.6	14
7	Picture-naming in American Sign Language: an electrophysiological study of the effects of iconicity and structured alignment. Language, Cognition and Neuroscience, 2021, 36, 199-210.	1.2	6
8	The neurocognitive basis of skilled reading in prelingually and profoundly deaf adults. Language and Linguistics Compass, 2021, 15, e12407.	2.3	9
9	The ASL-LEX 2.0 Project: A Database of Lexical and Phonological Properties for 2,723 Signs in American Sign Language. Journal of Deaf Studies and Deaf Education, 2021, 26, 263-277.	1.2	28
10	Masked ERP repetition priming in deaf and hearing readers. Brain and Language, 2021, 214, 104903.	1.6	6
11	On the Connection Between Language Control and Executive Control—An ERP Study. Neurobiology of Language (Cambridge, Mass), 2021, 2, 628-646.	3.1	11
12	Teaching & Learning Guide for: The neurocognitive basis of skilled reading in prelingually and profoundly deaf adults. Language and Linguistics Compass, 2021, 15, e12410.	2.3	0
13	The organization of the American Sign Language lexicon: Comparing one- and two-parameter ERP phonological priming effects across tasks. Brain and Language, 2021, 218, 104960.	1.6	6
14	Language control in bimodal bilinguals: Evidence from ERPs. Neuropsychologia, 2021, 161, 108019.	1.6	7
15	Environmentally-Coupled Signs and Gestures. Journal of Cognition, 2021, 4, 39.	1.4	1
16	Matching pictures and signs: An ERP study of the effects of iconic structural alignment in American sign language. Neuropsychologia, 2021, 162, 108051.	1.6	3
17	The neural correlates for spatial language: Perspective-dependent and -independent relationships in American Sign Language and spoken English. Brain and Language, 2021, 223, 105044.	1.6	1
18	New Perspectives on the Neurobiology of Sign Languages. Frontiers in Communication, 2021, 6, .	1.2	7

#	Article	IF	CITATIONS
19	Second language acquisition of American Sign Language influences co-speech gesture production. Bilingualism, 2020, 23, 473-482.	1.3	11
20	Sign Language: How the Brain Represents Phonology without Sound. Current Biology, 2020, 30, R1361-R1363.	3.9	0
21	Visual-Spatial Perspective-Taking in Spatial Scenes and in American Sign Language. Journal of Deaf Studies and Deaf Education, 2020, 25, 447-456.	1.2	12
22	Unique N170 signatures to words and faces in deaf ASL signers reflect experience-specific adaptations during early visual processing. Neuropsychologia, 2020, 141, 107414.	1.6	9
23	An ERP investigation of orthographic precision in deaf and hearing readers. Neuropsychologia, 2020, 146, 107542.	1.6	12
24	Cross-modal translation priming and iconicity effects in deaf signers and hearing learners of American Sign Language. Bilingualism, 2020, 23, 1032-1044.	1.3	16
25	Turning languages on and off: Switching into and out of code-blends reveals the nature of bilingual language control Journal of Experimental Psychology: Learning Memory and Cognition, 2020, 46, 443-454.	0.9	11
26	Code-blending with depicting signs. Linguistic Approaches To Bilingualism, 2020, 10, 290-308.	0.9	3
27	Neurophysiological Correlates of Frequency, Concreteness, and Iconicity in American Sign Language. Neurobiology of Language (Cambridge, Mass), 2020, 1, 249-267.	3.1	15
28	Cross-linguistic metaphor priming in ASL-English bilinguals. Sign Language and Linguistics (Online), 2020, 23, 96-111.	0.5	0
29	Second language acquisition of American Sign Language influences co-speech gesture production. Bilingualism, 2020, 23, 473-482.	1.3	3
30	ERP Evidence for Co-Activation of English Words during Recognition of American Sign Language Signs. Brain Sciences, 2019, 9, 148.	2.3	25
31	Language: Do Bilinguals Think Differently in Each Language?. Current Biology, 2019, 29, R1133-R1135.	3.9	2
32	ERP Effects of masked orthographic neighbour priming in deaf readers. Language, Cognition and Neuroscience, 2019, 34, 1016-1026.	1.2	11
33	Assessing the Comprehension of Spatial Perspectives in ASL Classifier Constructions. Journal of Deaf Studies and Deaf Education, 2019, 24, 214-222.	1.2	9
34	Phonological and semantic priming in American Sign Language: N300 and N400 effects. Language, Cognition and Neuroscience, 2018, 33, 1092-1106.	1.2	15
35	Experimental approaches to studying visible meaning. Theoretical Linguistics, 2018, 44, 259-263.	0.2	0
36	Language switching decomposed through MEG and evidence from bimodal bilinguals. Proceedings of the United States of America, 2018, 115, 9708-9713.	7.1	65

#	Article	IF	CITATIONS
37	Orthographic and phonological selectivity across the reading system in deaf skilled readers. Neuropsychologia, 2018, 117, 500-512.	1.6	16
38	ASL-LEX: A lexical database of American Sign Language. Behavior Research Methods, 2017, 49, 784-801.	4.0	125
39	Implicit co-activation of American Sign Language in deaf readers: An ERP study. Brain and Language, 2017, 170, 50-61.	1.6	51
40	How bilingualism protects the brain from aging: Insights from bimodal bilinguals. Human Brain Mapping, 2017, 38, 4109-4124.	3.6	33
41	Brain-based individual difference measures of reading skill in deaf and hearing adults. Neuropsychologia, 2017, 101, 153-168.	1.6	14
42	Fingerspelled and Printed Words Are Recoded into a Speech-based Code in Short-term Memory. Journal of Deaf Studies and Deaf Education, 2017, 22, 72-87.	1.2	17
43	Multimodal integration of spontaneously produced representational co-speech gestures: an fMRI study. Language, Cognition and Neuroscience, 2017, 32, 158-174.	1.2	14
44	The N170 ERP component differs in laterality, distribution, and association with continuous reading measures for deaf and hearing readers. Neuropsychologia, 2017, 106, 298-309.	1.6	30
45	Graph theoretical analysis of functional network for comprehension of sign language. Brain Research, 2017, 1671, 55-66.	2.2	10
46	Functional Connectivity Reveals Which Language the "Control Regions―Control during Bilingual Production. Frontiers in Human Neuroscience, 2016, 10, 616.	2.0	10
47	The neural circuits recruited for the production of signs and fingerspelled words. Brain and Language, 2016, 160, 30-41.	1.6	37
48	The neural underpinnings of reading skill in deaf adults. Brain and Language, 2016, 160, 11-20.	1.6	15
49	American Sign Language Comprehension Test: A Tool for Sign Language Researchers. Journal of Deaf Studies and Deaf Education, 2016, 21, 64-69.	1.2	25
50	Language co-activation and lexical selection in bimodal bilinguals: Evidence from picture–word interference. Bilingualism, 2016, 19, 264-276.	1.3	39
51	Psycholinguistic, cognitive, and neural implications of bimodal bilingualism. Bilingualism, 2016, 19, 223-242.	1.3	102
52	Neural correlates of fingerspelling, text, and sign processing in deaf American Sign Language–English bilinguals. Language, Cognition and Neuroscience, 2015, 30, 749-767.	1.2	22
53	Viewpoint in the Visual-Spatial Modality: The Coordination of Spatial Perspective. Spatial Cognition and Computation, 2015, 15, 143-169.	1.2	21
54	Directionality in ASL-English interpreting. Interpreting, 2015, 17, 145-166.	1.3	12

#	Article	IF	CITATIONS
55	Simultaneous perception of a spoken and a signed language: The brain basis of ASL-English code-blends. Brain and Language, 2015, 147, 96-106.	1.6	16
56	Parallel language activation and inhibitory control in bimodal bilinguals. Cognition, 2015, 141, 9-25.	2.2	69
57	Synchronization to auditory and visual rhythms in hearing and deaf individuals. Cognition, 2015, 134, 232-244.	2.2	119
58	How sensory-motor systems impact the neural organization for language: direct contrasts between spoken and signed language. Frontiers in Psychology, 2014, 5, 484.	2.1	58
59	Iconicity as structure mapping. Philosophical Transactions of the Royal Society B: Biological Sciences, 2014, 369, 20130301.	4.0	100
60	The eyes don't point: Understanding language universals through person marking in American Signed Language. Lingua, 2013, 137, 219-229.	1.0	5
61	Mapping the reading circuitry for skilled deaf readers: An fMRI study of semantic and phonological processing. Brain and Language, 2013, 126, 169-180.	1.6	48
62	The Biology of Linguistic Expression Impacts Neural Correlates for Spatial Language. Journal of Cognitive Neuroscience, 2013, 25, 517-533.	2.3	58
63	Neuroanatomical differences in visual, motor, and language cortices between congenitally deaf signers, hearing signers, and hearing non-signers. Frontiers in Neuroanatomy, 2013, 7, 26.	1.7	45
64	Processing Orthographic Structure: Associations Between Print and Fingerspelling. Journal of Deaf Studies and Deaf Education, 2012, 17, 194-204.	1.2	36
65	Motion-sensitive cortex and motion semantics in American Sign Language. Neurolmage, 2012, 63, 111-118.	4.2	23
66	Bilingual processing of ASL–English code-blends: The consequences of accessing two lexical representations simultaneously. Journal of Memory and Language, 2012, 67, 199-210.	2.1	82
67	Sign language and pantomime production differentially engage frontal and parietal cortices. Language and Cognitive Processes, 2011, 26, 878-901.	2.2	56
68	Effects of iconicity and semantic relatedness on lexical access in american sign language Journal of Experimental Psychology: Learning Memory and Cognition, 2010, 36, 1573-1581.	0.9	62
69	CNS activation and regional connectivity during pantomime observation: No engagement of the mirror neuron system for deaf signers. NeuroImage, 2010, 49, 994-1005.	4.2	64
70	The Use of Visual Feedback During Signing: Evidence From Signers With Impaired Vision. Journal of Deaf Studies and Deaf Education, 2009, 14, 99-104.	1.2	22
71	Categorical perception of affective and linguistic facial expressions. Cognition, 2009, 110, 208-221.	2.2	49
72	The bimodal bilingual brain: Effects of sign language experience. Brain and Language, 2009, 109, 124-132.	1.6	67

#	Article	IF	CITATIONS
73	Visual feedback and self-monitoring of sign language. Journal of Memory and Language, 2009, 61, 398-411.	2.1	69
74	The Face of Bimodal Bilingualism. Psychological Science, 2008, 19, 531-535.	3.3	58
75	Bimodal bilingualism. Bilingualism, 2008, 11, 43-61.	1.3	255
76	Eye Gaze During Comprehension of American Sign Language by Native and Beginning Signers. Journal of Deaf Studies and Deaf Education, 2008, 14, 237-243.	1.2	97
77	The Source of Enhanced Cognitive Control in Bilinguals. Psychological Science, 2008, 19, 1201-1206.	3.3	218
78	Morphology of the Insula in Relation to Hearing Status and Sign Language Experience. Journal of Neuroscience, 2008, 28, 11900-11905.	3.6	53
79	The neural correlates of sign versus word production. NeuroImage, 2007, 36, 202-208.	4.2	136
80	The Relationship between Eye Gaze and Verb Agreement in American Sign Language: An Eye-tracking Study. Natural Language and Linguistic Theory, 2006, 24, 571-604.	1.0	56
81	Neural organization for recognition of grammatical and emotional facial expressions in deaf ASL signers and hearing nonsigners. Cognitive Brain Research, 2005, 22, 193-203.	3.0	92
82	Sign languages are problematic for a gestural origins theory of language evolution. Behavioral and Brain Sciences, 2005, 28, 130-131.	0.7	13
83	"Tip of the Fingers" Experiences by Deaf Signers: Insights Into the Organization of a Sign-Based Lexicon. Psychological Science, 2005, 16, 856-860.	3.3	90
84	The neural correlates of spatial language in English and American Sign Language: a PET study with hearing bilinguals. NeuroImage, 2005, 24, 832-840.	4.2	63
85	Motor-iconicity of sign language does not alter the neural systems underlying tool and action naming. Brain and Language, 2004, 89, 27-37.	1.6	65
86	Conceptual Locations and Pronominal Reference in American Sign Language. Journal of Psycholinguistic Research, 2004, 33, 321-331.	1.3	19
87	The puzzle of working memory for sign language. Trends in Cognitive Sciences, 2004, 8, 521-523.	7.8	34
88	Neural systems underlying lexical retrieval for sign language. Neuropsychologia, 2003, 41, 85-95.	1.6	71
89	A morphometric analysis of auditory brain regions in congenitally deaf adults. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 10049-10054.	7.1	182
90	Neural Systems Underlying Spatial Language in American Sign Language. NeuroImage, 2002, 17, 812-824.	4.2	204

#	Article	IF	CITATIONS
91	Using space to describe space: Perspective in speech, sign, and gesture. Spatial Cognition and Computation, 2000, 2, 157-180.	1.2	99
92	Visual imagery and visual-spatial language: Enhanced imagery abilities in deaf and hearing ASL signers. Cognition, 1993, 46, 139-181.	2.2	206
93	Lexical Recognition in Sign Language: Effects of Phonetic Structure and Morphology. Perceptual and Motor Skills, 1990, 71, 1227-1252.	1.3	146