## Pieter Vansteenwegen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5098937/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                        | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | The orienteering problem: A survey. European Journal of Operational Research, 2011, 209, 1-10.                                                                                 | 3.5 | 725       |
| 2  | Orienteering Problem: A survey of recent variants, solution approaches and applications. European<br>Journal of Operational Research, 2016, 255, 315-332.                      | 3.5 | 432       |
| 3  | Iterated local search for the team orienteering problem with time windows. Computers and Operations Research, 2009, 36, 3281-3290.                                             | 2.4 | 257       |
| 4  | The City Trip Planner: An expert system for tourists. Expert Systems With Applications, 2011, 38, 6540-6546.                                                                   | 4.4 | 213       |
| 5  | Joint maintenance and inventory optimization systems: A review. International Journal of Production Economics, 2013, 143, 499-508.                                             | 5.1 | 185       |
| 6  | A PERSONALIZED TOURIST TRIP DESIGN ALGORITHM FOR MOBILE TOURIST GUIDES. Applied Artificial Intelligence, 2008, 22, 964-985.                                                    | 2.0 | 177       |
| 7  | The Mobile Tourist Guide: An OR Opportunity. OR Insight, 2007, 20, 21-27.                                                                                                      | 0.1 | 167       |
| 8  | A guided local search metaheuristic for the team orienteering problem. European Journal of<br>Operational Research, 2009, 196, 118-127.                                        | 3.5 | 160       |
| 9  | Developing railway timetables which guarantee a better service. European Journal of Operational<br>Research, 2006, 173, 337-350.                                               | 3.5 | 128       |
| 10 | The Multiconstraint Team Orienteering Problem with Multiple Time Windows. Transportation Science, 2013, 47, 53-63.                                                             | 2.6 | 111       |
| 11 | A Path Relinking approach for the Team Orienteering Problem. Computers and Operations Research, 2010, 37, 1853-1859.                                                           | 2.4 | 102       |
| 12 | Decreasing the passenger waiting time for an intercity rail network. Transportation Research Part B:<br>Methodological, 2007, 41, 478-492.                                     | 2.8 | 97        |
| 13 | Integrating public transportation in personalised electronic tourist guides. Computers and Operations Research, 2013, 40, 758-774.                                             | 2.4 | 88        |
| 14 | A fast solution method for the time-dependent orienteering problem. European Journal of Operational<br>Research, 2014, 236, 419-432.                                           | 3.5 | 74        |
| 15 | A review of cutting path algorithms for laser cutters. International Journal of Advanced<br>Manufacturing Technology, 2016, 87, 1865-1884.                                     | 1.5 | 63        |
| 16 | Reducing the passenger travel time in practice by the automated construction of a robust railway timetable. Transportation Research Part B: Methodological, 2016, 84, 124-156. | 2.8 | 62        |
| 17 | The planning of cycle trips in the province of East Flanders. Omega, 2011, 39, 209-213.                                                                                        | 3.6 | 61        |
| 18 | An iterated local search algorithm for the single-vehicle cyclic inventory routing problem. European<br>Journal of Operational Research, 2014, 237, 802-813.                   | 3.5 | 60        |

PIETER VANSTEENWEGEN

| #  | Article                                                                                                                                                                            | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | A variable neighborhood search method for the orienteering problem with hotel selection.<br>International Journal of Production Economics, 2013, 145, 150-160.                     | 5.1 | 56        |
| 20 | Integrating robust timetabling in line plan optimization for railway systems. Transportation Research<br>Part C: Emerging Technologies, 2017, 77, 134-160.                         | 3.9 | 56        |
| 21 | Heuristics for the traveling repairman problem with profits. Computers and Operations Research, 2013, 40, 1700-1707.                                                               | 2.4 | 53        |
| 22 | A memetic algorithm for the orienteering problem with hotel selection. European Journal of<br>Operational Research, 2014, 237, 29-49.                                              | 3.5 | 52        |
| 23 | The travelling salesperson problem with hotel selection. Journal of the Operational Research Society, 2012, 63, 207-217.                                                           | 2.1 | 49        |
| 24 | Agile earth observation satellite scheduling: An orienteering problem with time-dependent profits and travel times. Computers and Operations Research, 2019, 111, 84-98.           | 2.4 | 49        |
| 25 | Tourist Trip Planning Functionalities: State–of–the–Art and Future. Lecture Notes in Computer<br>Science, 2010, , 474-485.                                                         | 1.0 | 45        |
| 26 | Improving the robustness in railway station areas. European Journal of Operational Research, 2014,<br>235, 276-286.                                                                | 3.5 | 45        |
| 27 | Metaheuristics for Tourist Trip Planning. Lecture Notes in Economics and Mathematical Systems, 2009, , 15-31.                                                                      | 0.3 | 43        |
| 28 | The train platforming problem: The infrastructure management company perspective. Transportation Research Part B: Methodological, 2014, 61, 55-72.                                 | 2.8 | 42        |
| 29 | An improvement heuristic framework for the laser cutting tool path problem. International Journal of Production Research, 2015, 53, 1761-1776.                                     | 4.9 | 42        |
| 30 | An extension of the arc orienteering problem and its application to cycle trip planning.<br>Transportation Research, Part E: Logistics and Transportation Review, 2014, 68, 64-78. | 3.7 | 40        |
| 31 | Construction heuristics for generating tool paths for laser cutters. International Journal of<br>Production Research, 2014, 52, 5965-5984.                                         | 4.9 | 39        |
| 32 | A survey on demand-responsive public bus systems. Transportation Research Part C: Emerging<br>Technologies, 2022, 137, 103573.                                                     | 3.9 | 39        |
| 33 | Solving the stochastic time-dependent orienteering problem with time windows. European Journal of<br>Operational Research, 2016, 255, 699-718.                                     | 3.5 | 37        |
| 34 | An iterative approach for reducing the impact of infrastructure maintenance on the performance of railway systems. European Journal of Operational Research, 2016, 252, 39-53.     | 3.5 | 35        |
| 35 | Personalized Tourist Route Generation. Lecture Notes in Computer Science, 2010, , 486-497.                                                                                         | 1.0 | 35        |
| 36 | A memetic algorithm for the travelling salesperson problem with hotel selection. Computers and Operations Research, 2013, 40, 1716-1728.                                           | 2.4 | 34        |

Pieter Vansteenwegen

| #  | Article                                                                                                                                                                     | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | A two-phase algorithm for the cyclic inventory routing problem. European Journal of Operational Research, 2016, 254, 410-426.                                               | 3.5 | 33        |
| 38 | Robust routing and timetabling in complex railway stations. Transportation Research Part B:<br>Methodological, 2017, 101, 228-244.                                          | 2.8 | 28        |
| 39 | Well-tuned algorithms for the Team Orienteering Problem with Time Windows. Journal of the<br>Operational Research Society, 2017, 68, 861-876.                               | 2.1 | 28        |
| 40 | Robust railway station planning: An interaction between routing, timetabling and platforming.<br>Journal of Rail Transport Planning and Management, 2013, 3, 68-77.         | 0.8 | 27        |
| 41 | An Exact Algorithm for Agile Earth Observation Satellite Scheduling with Time-Dependent Profits.<br>Computers and Operations Research, 2020, 120, 104946.                   | 2.4 | 27        |
| 42 | The time-dependent orienteering problem with time windows: a fast ant colony system. Annals of Operations Research, 2017, 254, 481-505.                                     | 2.6 | 26        |
| 43 | Considering emissions in the transit network design and frequency setting problem with a heterogeneous fleet. European Journal of Operational Research, 2020, 282, 580-592. | 3.5 | 25        |
| 44 | A matheuristic algorithm for the vehicle routing problem with cross-docking. Applied Soft Computing<br>Journal, 2021, 103, 107163.                                          | 4.1 | 23        |
| 45 | A minimum cost network flow model for the maximum covering and patrol routing problem.<br>European Journal of Operational Research, 2015, 247, 27-36.                       | 3.5 | 21        |
| 46 | Solving the mobile mapping van problem: A hybrid metaheuristic for capacitated arc routing with soft time windows. Computers and Operations Research, 2010, 37, 1870-1876.  | 2.4 | 20        |
| 47 | Cutting Path Optimization Using Tabu Search. Key Engineering Materials, 2011, 473, 739-748.                                                                                 | 0.4 | 20        |
| 48 | Considering a dynamic impact zone for real-time railway traffic management. Transportation Research<br>Part B: Methodological, 2018, 111, 39-59.                            | 2.8 | 20        |
| 49 | Hybrid Approach for the Public Transportation Time Dependent Orienteering Problem with Time<br>Windows. Lecture Notes in Computer Science, 2010, , 151-158.                 | 1.0 | 20        |
| 50 | Trip Planning Functionalities: State of the Art and Future. Information Technology and Tourism, 2010, 12, 305-315.                                                          | 3.4 | 18        |
| 51 | A Mobile Tourist Decision Support System for Small Footprint Devices. Lecture Notes in Computer Science, 2009, , 1248-1255.                                                 | 1.0 | 18        |
| 52 | Planning in tourism and public transportation. 4or, 2009, 7, 293-296.                                                                                                       | 1.0 | 17        |
| 53 | A survey on the transit network design and frequency setting problem. Public Transport, 2022, 14, 155-190.                                                                  | 1.7 | 17        |
| 54 | Sheet Metal Laser Cutting Tool Path Generation: Dealing with Overlooked Problem Aspects. Key<br>Engineering Materials, 0, 639, 517-524.                                     | 0.4 | 16        |

4

PIETER VANSTEENWEGEN

| #  | Article                                                                                                                                                                                     | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | A large neighborhood search algorithm to optimize a demand-responsive feeder service.<br>Transportation Research Part C: Emerging Technologies, 2021, 127, 103102.                          | 3.9 | 16        |
| 56 | A fast metaheuristic for the travelling salesperson problem with hotel selection. 4or, 2015, 13, 15-34.                                                                                     | 1.0 | 15        |
| 57 | Intelligent Routing System for a Personalised Electronic Tourist Guide. , 2009, , 185-197.                                                                                                  |     | 13        |
| 58 | Solving the Agile Earth Observation Satellite Scheduling Problem With Time-Dependent Transition<br>Times. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2022, 52, 1614-1625. | 5.9 | 13        |
| 59 | Automated platforming & routing of trains in all Belgian railway stations. Expert Systems With<br>Applications, 2016, 62, 302-316.                                                          | 4.4 | 11        |
| 60 | Time dependent orienteering problem with time windows and service time dependent profits.<br>Computers and Operations Research, 2022, 143, 105794.                                          | 2.4 | 10        |
| 61 | A metaheuristic solution approach for the time-constrained project scheduling problem. OR<br>Spectrum, 2017, 39, 353-371.                                                                   | 2.1 | 9         |
| 62 | An Iterated Local Search Algorithm for Agile Earth Observation Satellite Scheduling Problem. , 2018, , .                                                                                    |     | 8         |
| 63 | Variable Neighbourhood Descent for Planning Crane Operations in a Train Terminal. Lecture Notes in Economics and Mathematical Systems, 2009, , 83-98.                                       | 0.3 | 8         |
| 64 | Other Orienteering Problem Variants. EURO Advanced Tutorials on Operational Research, 2019, , 95-112.                                                                                       | 0.6 | 8         |
| 65 | Personalized Multi-day Trips to Touristic Regions: A Hybrid GA-VND Approach. Lecture Notes in<br>Computer Science, 2014, , 194-205.                                                         | 1.0 | 7         |
| 66 | Optimization of supplements and buffer times in passenger robust timetabling. Journal of Rail<br>Transport Planning and Management, 2017, 7, 171-186.                                       | 0.8 | 7         |
| 67 | Large neighborhood search for the bike request scheduling problem. International Transactions in<br>Operational Research, 2020, 27, 2695-2714.                                              | 1.8 | 6         |
| 68 | Two-phase Matheuristic for the vehicle routing problem with reverse cross-docking. Annals of Mathematics and Artificial Intelligence, 2022, 90, 915-949.                                    | 0.9 | 6         |
| 69 | The Multi-Vehicle Cyclic Inventory Routing Problem: Formulation and a Metaheuristic Approach.<br>Computers and Industrial Engineering, 2021, 157, 107320.                                   | 3.4 | 6         |
| 70 | Automated Parameterisation of a Metaheuristic for the Orienteering Problem. Studies in Computational Intelligence, 2008, , 255-269.                                                         | 0.7 | 6         |
| 71 | Definitions and Mathematical Models of Single Vehicle Routing Problems with Profits. EURO<br>Advanced Tutorials on Operational Research, 2019, , 7-19.                                      | 0.6 | 6         |
| 72 | Algorithm Selection forÂtheÂTeam Orienteering Problem. Lecture Notes in Computer Science, 2022, ,<br>33-45.                                                                                 | 1.0 | 5         |

| #  | Article                                                                                                                                                                                                                        | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Towards a conflict prevention strategy applicable for real-time railway traffic management. Journal of Rail Transport Planning and Management, 2019, 11, 100139.                                                               | 0.8 | 4         |
| 74 | An Exact Solution Approach for the Bus Line Planning Problem with Integrated Passenger Routing.<br>Journal of Advanced Transportation, 2021, 2021, 1-18.                                                                       | 0.9 | 4         |
| 75 | State-of-the-Art Solution Techniques for OPTW and TOPTW. EURO Advanced Tutorials on Operational Research, 2019, , 67-81.                                                                                                       | 0.6 | 4         |
| 76 | A Detailed Analysis of Two Metaheuristics for the Team Orienteering Problem. Lecture Notes in<br>Computer Science, 2009, , 110-114.                                                                                            | 1.0 | 3         |
| 77 | A Matheuristic Iterative Approach for Profit-Oriented Line Planning Applied to the Chinese High-Speed Railway Network. Journal of Advanced Transportation, 2020, 2020, 1-18.                                                   | 0.9 | 3         |
| 78 | Designing bus line plans for realistic cases - the Utrecht case study. Expert Systems With Applications, 2022, 187, 115918.                                                                                                    | 4.4 | 3         |
| 79 | Applications of the OP. EURO Advanced Tutorials on Operational Research, 2019, , 83-93.                                                                                                                                        | 0.6 | 3         |
| 80 | A column generation algorithm for the demandâ€responsive feeder service with mandatory and optional, clustered busâ€stops. Networks, 2022, 80, 274-296.                                                                        | 1.6 | 3         |
| 81 | TouRS'15., 2015,,.                                                                                                                                                                                                             |     | 2         |
| 82 | The grid based approach, a fast local evaluation technique for line planning. 4or, 2022, 20, 603-635.                                                                                                                          | 1.0 | 2         |
| 83 | State-of-the-Art Solution Techniques for OP and TOP. EURO Advanced Tutorials on Operational Research, 2019, , 41-66.                                                                                                           | 0.6 | 2         |
| 84 | Definitions and Mathematical Models of OP Variants. EURO Advanced Tutorials on Operational Research, 2019, , 21-32.                                                                                                            | 0.6 | 2         |
| 85 | The design of a flexible bus line plan. Expert Systems With Applications, 2022, 203, 117352.                                                                                                                                   | 4.4 | 2         |
| 86 | The Mobile Mapping Van Problem: a matheuristic for capacitated arc routing with soft time windows<br>and depot selection. IFAC Postprint Volumes IPPV / International Federation of Automatic Control,<br>2009, 42, 1114-1119. | 0.4 | 1         |
| 87 | Practical Macroscopic Evaluation and Comparison of Railway Timetables. Transportation Research<br>Procedia, 2015, 10, 625-633.                                                                                                 | 0.8 | 1         |
| 88 | An Integrated Perspective on Traffic Management and Logistic Optimization. , 2015, , .                                                                                                                                         |     | 1         |
| 89 | Simulated Annealing for the Multi-Vehicle Cyclic Inventory Routing Problem. , 2019, , .                                                                                                                                        |     | 1         |
| 90 | Automated, Passenger Time Optimal, Robust Timetabling, Using Integer Programming. Lecture Notes in<br>Electrical Engineering, 2012, , 87-92.                                                                                   | 0.3 | 1         |

| #  | Article                                                                                   | IF | CITATIONS |
|----|-------------------------------------------------------------------------------------------|----|-----------|
| 91 | Reducing logistic vehicle kilometers in a city area based on network changes. , 2017, , . |    | Ο         |
| 92 | Simulated annealing for the single-vehicle cyclic inventory routing problem. , 2019, , .  |    | 0         |

Simulated annealing for the single-vehicle cyclic inventory routing problem. , 2019, , . 92