Yongqian Shi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5098833/publications.pdf

Version: 2024-02-01

108 papers	6,864 citations	43973 48 h-index	80 g-index
109	109	109	4281
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Superhydrophobic self-extinguishing cotton fabrics for electromagnetic interference shielding and human motion detection. Journal of Materials Science and Technology, 2023, 132, 59-68.	5.6	75
2	Constructing segregated polystyrene composites for excellent fire resistance and electromagnetic wave shielding. Journal of Colloid and Interface Science, 2022, 606, 1193-1204.	5.0	35
3	Lightweight, amphipathic and fire-resistant prGO/MXene spherical beads for rapid elimination of hazardous chemicals. Journal of Hazardous Materials, 2022, 423, 127069.	6.5	34
4	Efficient extraction of trace organochlorine pesticides from environmental samples by a polyacrylonitrile electrospun nanofiber membrane modified with covalent organic framework. Journal of Hazardous Materials, 2022, 424, 127455.	6.5	40
5	Insights into enhanced peroxydisulfate activation with S doped Fe@C catalyst for the rapid degradation of organic pollutants. Journal of Colloid and Interface Science, 2022, 610, 24-34.	5.0	27
6	Fire-safe, mechanically strong and tough thermoplastic Polyurethane/MXene nanocomposites with exceptional smoke suppression. Materials Today Physics, 2022, 22, 100607.	2.9	52
7	Phosphorous-Nitrogen flame retardants engineering MXene towards highly fire safe thermoplastic polyurethane. Composites Communications, 2022, 29, 101055.	3.3	65
8	Engineering titanium carbide ultra-thin nanosheets for enhanced fire safety of intumescent flame retardant polylactic acid. Composites Part B: Engineering, 2022, 236, 109792.	5.9	37
9	An experimental study on bidirectional pedestrian flow involving individuals with simulated disabilities in a corridor. Safety Science, 2022, 150, 105723.	2.6	11
10	Creating multilayer-structured polystyrene composites for enhanced fire safety and electromagnetic shielding. Composites Part B: Engineering, 2022, 242, 110068.	5.9	18
11	Functionalizing MXenes with molybdenum trioxide towards reducing fire hazards of thermoplastic polyurethane. New Journal of Chemistry, 2022, 46, 14112-14121.	1.4	5
12	Flexible and fire safe sandwich structured composites with superior electromagnetic interference shielding properties. Composites Part A: Applied Science and Manufacturing, 2022, 160, 107070.	3.8	41
13	A novel understanding of combustion behavior of coals by cone calorimeter. Journal of Thermal Analysis and Calorimetry, 2021, 143, 139-150.	2.0	4
14	Rapid elimination of trace bisphenol pollutants with porous β-cyclodextrin modified cellulose nanofibrous membrane in water: adsorption behavior and mechanism. Journal of Hazardous Materials, 2021, 403, 123666.	6.5	102
15	Highly flame-retardant epoxy-based thermal conductive composites with functionalized boron nitride nanosheets exfoliated by one-step ball milling. Chemical Engineering Journal, 2021, 407, 127099.	6.6	131
16	Efficient adsorption of diclofenac sodium in water by a novel functionalized cellulose aerogel. Environmental Research, 2021, 194, 110652.	3.7	55
17	Induced assembly of polystyrene composites for simultaneously improving flame retardant and electromagnetic shielding properties. Polymers for Advanced Technologies, 2021, 32, 4251-4262.	1.6	9
18	Synergistic function of <scp>Nâ€Pâ€Cu</scp> containing supermolecular assembly networks in intumescent flame retardant thermoplastic polyurethane. Polymers for Advanced Technologies, 2021, 32, 4450-4463.	1.6	32

#	Article	IF	CITATIONS
19	Dynamics of bidirectional pedestrian flow in a corridor including individuals with disabilities. Physica A: Statistical Mechanics and Its Applications, 2021, 580, 126140.	1.2	15
20	Highly efficient MXene/Nano-Cu smoke suppressant towards reducing fire hazards of thermoplastic polyurethane. Composites Part A: Applied Science and Manufacturing, 2021, 150, 106600.	3.8	60
21	Functionalizing MXene towards highly stretchable, ultratough, fatigue- and fire-resistant polymer nanocomposites. Chemical Engineering Journal, 2021, 424, 130338.	6.6	130
22	A facile strategy for lightweight, anti-dripping, flexible polyurethane foam with low smoke emission tendency and superior electromagnetic wave blocking. Journal of Colloid and Interface Science, 2021, 603, 25-36.	5.0	21
23	MXene based core-shell flame retardant towards reducing fire hazards of thermoplastic polyurethane. Composites Part B: Engineering, 2021, 226, 109363.	5.9	86
24	The influence of highly dispersed Cu2O-anchored MoS2 hybrids on reducing smoke toxicity and fire hazards for rigid polyurethane foam. Journal of Hazardous Materials, 2020, 382, 121028.	6.5	69
25	Facile synthesis of aluminum branched oligo(phenylphosphonate) submicro-particles with enhanced flame retardance and smoke toxicity suppression for epoxy resin composites. Journal of Hazardous Materials, 2020, 381, 121233.	6.5	47
26	Insight into Hyper-Branched Aluminum Phosphonate in Combination with Multiple Phosphorus Synergies for Fire-Safe Epoxy Resin Composites. Polymers, 2020, 12, 64.	2.0	9
27	Surface modification of ammonium polyphosphate by supramolecular assembly for enhancing fire safety properties of polypropylene. Composites Part B: Engineering, 2020, 181, 107588.	5.9	106
28	Enhanced Fire Safety of Rigid Polyurethane Foam via Synergistic Effect of Phosphorus/Nitrogen Compounds and Expandable Graphite. Molecules, 2020, 25, 4741.	1.7	44
29	Creating MXene/reduced graphene oxide hybrid towards highly fire safe thermoplastic polyurethane nanocomposites. Composites Part B: Engineering, 2020, 203, 108486.	5.9	145
30	Interface engineering of MXene towards super-tough and strong polymer nanocomposites with high ductility and excellent fire safety. Chemical Engineering Journal, 2020, 399, 125829.	6.6	226
31	Strengthening, toughing and thermally stable ultra-thin MXene nanosheets/polypropylene nanocomposites via nanoconfinement. Chemical Engineering Journal, 2019, 378, 122267.	6.6	191
32	Hierarchical assembly of polystyrene/graphitic carbon nitride/reduced graphene oxide nanocomposites toward high fire safety. Composites Part B: Engineering, 2019, 179, 107541.	5.9	51
33	Highly Effective Flame-Retardant Rigid Polyurethane Foams: Fabrication and Applications in Inhibition of Coal Combustion. Polymers, 2019, 11, 1776.	2.0	36
34	Walking behavior of pedestrian social groups on stairs: A field study. Safety Science, 2019, 117, 447-457.	2.6	60
35	Electrostatic-Interaction-Driven Assembly of Binary Hybrids towards Fire-Safe Epoxy Resin Nanocomposites. Polymers, 2019, 11, 229.	2.0	10
36	MoO3-ZrO2 solid acid for enhancement in the efficiency of intumescent flame retardant. Powder Technology, 2019, 344, 581-589.	2.1	32

#	Article	IF	CITATIONS
37	Sodium alginate-templated synthesis of g-C3N4/carbon spheres/Cu ternary nanohybrids for fire safety application. Journal of Colloid and Interface Science, 2019, 539, 1-10.	5.0	51
38	Design of reduced graphene oxide decorated with DOPO-phosphanomidate for enhanced fire safety of epoxy resin. Journal of Colloid and Interface Science, 2018, 521, 160-171.	5.0	157
39	Highly-efficient reinforcement and flame retardancy of rigid polyurethane foam with phosphorus-containing additive and nitrogen-containing compound. Materials Chemistry and Physics, 2018, 211, 42-53.	2.0	71
40	A combination of POSS and polyphosphazene for reducing fire hazards of epoxy resin. Polymers for Advanced Technologies, 2018, 29, 1242-1254.	1.6	53
41	Poorly-/well-dispersed graphene: Abnormal influence on flammability and fire behavior of intumescent flame retardant. Composites Part A: Applied Science and Manufacturing, 2018, 109, 345-354.	3.8	172
42	Flammability of polystyrene/aluminim phosphinate composites containing modified ammonium polyphosphate. Journal of Thermal Analysis and Calorimetry, 2018, 131, 1067-1077.	2.0	20
43	Scalable one-step synthesis of hydroxylated boron nitride nanosheets for obtaining multifunctional polyvinyl alcohol nanocomposite films: Multi-azimuth properties improvement. Composites Science and Technology, 2018, 168, 74-80.	3.8	32
44	Highly efficient catalysts for reducing toxic gases generation change with temperature of rigid polyurethane foam nanocomposites: A comparative investigation. Composites Part A: Applied Science and Manufacturing, 2018, 112, 142-154.	3.8	47
45	In situ growth of polyphosphazene particles on molybdenum disulfide nanosheets for flame retardant and friction application. Composites Part A: Applied Science and Manufacturing, 2018, 114, 407-417.	3.8	39
46	The influence of typical layered inorganic compounds on the improved thermal stability and fire resistance properties of polystyrene nanocomposites. Polymer Composites, 2017, 38, E320.	2.3	6
47	Dual modification of graphene by polymeric flame retardant and Ni(OH) 2 nanosheets for improving flame retardancy of polypropylene. Composites Part A: Applied Science and Manufacturing, 2017, 100, 106-117.	3.8	283
48	Constructing 3D Polyphosphazene Nanotube@Mesoporous Silica@Bimetallic Phosphide Ternary Nanostructures via Layer-by-Layer Method: Synthesis and Applications. ACS Applied Materials & Samp; Interfaces, 2017, 9, 23027-23038.	4.0	45
49	Novel graphite-like carbon nitride/organic aluminum diethylhypophosphites nanohybrid: Preparation and enhancement on thermal stability and flame retardancy of polystyrene. Composites Part A: Applied Science and Manufacturing, 2017, 99, 149-156.	3.8	42
50	Graphitic carbon nitride/phosphorus-rich aluminum phosphinates hybrids as smoke suppressants and flame retardants for polystyrene. Journal of Hazardous Materials, 2017, 332, 87-96.	6.5	179
51	Effect of electron beam irradiation and microencapsulation on the flame retardancy of ethylene-vinyl acetate copolymer materials during hot water ageing test. Radiation Physics and Chemistry, 2017, 133, 1-8.	1.4	9
52	A facile strategy to simultaneously exfoliate and functionalize boron nitride nanosheets via Lewis acid-base interaction. Chemical Engineering Journal, 2017, 330, 309-321.	6.6	135
53	Hypophosphite/Graphitic Carbon Nitride Hybrids: Preparation and Flame-Retardant Application in Thermoplastic Polyurethane. Nanomaterials, 2017, 7, 259.	1.9	67
54	The influence of zinc hydroxystannate on reducing toxic gases (CO, NO x and HCN) generation and fire hazards of thermoplastic polyurethane composites. Journal of Hazardous Materials, 2016, 314, 260-269.	6.5	113

#	Article	lF	Citations
55	Preparation of Schiff base decorated graphene oxide and its application in TPU with enhanced thermal stability. RSC Advances, 2016, 6, 90018-90023.	1.7	19
56	A Novel Branched Phosphorus-Containing Flame Retardant: Synthesis and Its Application into Poly(Butylene Terephthalate). Industrial & Engineering Chemistry Research, 2016, 55, 10218-10225.	1.8	14
57	Phosphorus and Nitrogen-Containing Polyols: Synergistic Effect on the Thermal Property and Flame Retardancy of Rigid Polyurethane Foam Composites. Industrial & Engineering Chemistry Research, 2016, 55, 10813-10822.	1.8	150
58	Processable Dispersions of Graphitic Carbon Nitride Based Nanohybrids and Application in Polymer Nanocomposites. Industrial & Engineering Chemistry Research, 2016, 55, 7646-7654.	1.8	26
59	Synergistic effect of graphitic carbon nitride and ammonium polyphosphate for enhanced thermal and flame retardant properties of polystyrene. Materials Chemistry and Physics, 2016, 177, 283-292.	2.0	50
60	Fabrication of LDH nanosheets on \hat{l}^2 -FeOOH rods and applications for improving the fire safety of epoxy resin. Composites Part A: Applied Science and Manufacturing, 2016, 80, 259-269.	3.8	85
61	A facile method to prepare reduced graphene oxide with a large pore volume. Materials Letters, 2016, 162, 154-156.	1.3	16
62	Enhanced flame retardancy of polypropylene by melamine-modified graphene oxide. Journal of Materials Science, 2015, 50, 5389-5401.	1.7	60
63	Graphite-like carbon nitride and functionalized layered double hydroxide filled polypropylene-grafted maleic anhydride nanocomposites: Comparison in flame retardancy, and thermal, mechanical and UV-shielding properties. Composites Part B: Engineering, 2015, 79, 277-284.	5.9	54
64	Preparation of layered graphitic carbon nitride/montmorillonite nanohybrids for improving thermal stability of sodium alginate nanocomposites. RSC Advances, 2015, 5, 11761-11765.	1.7	10
65	Click-chemistry approach for graphene modification: effective reinforcement of UV-curable functionalized graphene/polyurethane acrylate nanocomposites. RSC Advances, 2015, 5, 13502-13506.	1.7	21
66	Recent advances for microencapsulation of flame retardant. Polymer Degradation and Stability, 2015, 113, 96-109.	2.7	97
67	Enhanced thermal and flame retardant properties of flame-retardant-wrapped graphene/epoxy resin nanocomposites. Journal of Materials Chemistry A, 2015, 3, 8034-8044.	5.2	371
68	Tunable thermal, flame retardant and toxic effluent suppression properties of polystyrene based on alternating graphitic carbon nitride and multi-walled carbon nanotubes. Journal of Materials Chemistry A, 2015, 3, 17064-17073.	5.2	61
69	Enhanced thermal stability of polystyrene by graphitic carbon nitride/spinel ZnCo ₂ O ₄ nanohybrids and the catalytic mechanism investigation. RSC Advances, 2015, 5, 41835-41838.	1.7	14
70	MoS ₂ Nanolayers Grown on Carbon Nanotubes: An Advanced Reinforcement for Epoxy Composites. ACS Applied Materials & Interfaces, 2015, 7, 6070-6081.	4.0	180
71	Novel CuCo2O4/graphitic carbon nitride nanohybrids: Highly effective catalysts for reducing CO generation and fire hazards of thermoplastic polyurethane nanocomposites. Journal of Hazardous Materials, 2015, 293, 87-96.	6.5	125
72	Thermal and flame retardant properties of transparent UV-curing epoxy acrylate coatings with POSS-based phosphonate acrylate. RSC Advances, 2015, 5, 75254-75262.	1.7	33

#	Article	IF	Citations
73	Sandwichlike Coating Consisting of Alternating Montmorillonite and \hat{l}^2 -FeOOH for Reducing the Fire Hazard of Flexible Polyurethane Foam. ACS Sustainable Chemistry and Engineering, 2015, 3, 3214-3223.	3.2	49
74	Cyclodextrin microencapsulated ammonium polyphosphate: Preparation and its performance on the thermal, flame retardancy and mechanical properties of ethylene vinyl acetate copolymer. Composites Part B: Engineering, 2015, 69, 22-30.	5.9	87
75	Fabrication of graphene supported carbonâ€coating cobalt and carbon nanoshells for adsorption of toxic gases and smoke. Journal of Applied Polymer Science, 2014, 131, .	1.3	4
76	Combined effect of transition metal phosphide (M _x P _y , M = Ni, Co, and Cu) and intumescent flame retardant system on polypropylene. Polymers for Advanced Technologies, 2014, 25, 701-710.	l 1.6	19
77	Preparation of microcapsulated ammonium polyphosphate, pentaerythritol with glycidyl methacrylate, butyl methacrylate and their synergistic flame―retardancy for ethylene vinyl acetate copolymer. Polymers for Advanced Technologies, 2014, 25, 73-82.	1.6	19
78	Sol–gel synthesis and enhanced properties of a novel transparent PMMA based organic–inorganic hybrid containing phosphorus, nitrogen and silicon. Journal of Sol-Gel Science and Technology, 2014, 69, 418-428.	1.1	16
79	A Novel Transparent Cross-Linked Poly(methyl methacrylate)-Based Copolymer with Enhanced Mechanical, Thermal, and Flame-Retardant Properties. Industrial & Engineering Chemistry Research, 2014, 53, 3880-3887.	1.8	18
80	Poly(methyl methacrylate)/layered zinc sulfide nanocomposites: Preparation, characterization and the improvements in thermal stability, flame retardant and optical properties. Materials Research Bulletin, 2014, 56, 107-112.	2.7	17
81	Facile preparation of poly(methyl methacrylate)/MoS2 nanocomposites via in situ emulsion polymerization. Materials Letters, 2014, 126, 159-161.	1.3	58
82	In situ synthesis of hierarchical flower-like Bi2S3/BiOCl composite with enhanced visible light photocatalytic activity. Applied Surface Science, 2014, 290, 313-319.	3.1	100
83	Facile preparation of ZnS/g-C ₃ N ₄ nanohybrids for enhanced optical properties. RSC Advances, 2014, 4, 2609-2613.	1.7	38
84	Influence of g-C ₃ N ₄ Nanosheets on Thermal Stability and Mechanical Properties of Biopolymer Electrolyte Nanocomposite Films: A Novel Investigation. ACS Applied Materials & Samp; Interfaces, 2014, 6, 429-437.	4.0	159
85	Synergetic effect of ferrocene and MoS2 in polystyrene composites with enhanced thermal stability, flame retardant and smoke suppression properties. RSC Advances, 2014, 4, 13205.	1.7	66
86	Ternary graphene–CoFe ₂ O ₄ /CdS nanohybrids: preparation and application as recyclable photocatalysts. Journal of Materials Chemistry A, 2014, 2, 535-544.	5.2	78
87	Functionalized graphene/thermoplastic polyester elastomer nanocomposites by reactive extrusionâ€based masterbatch: preparation and properties reinforcement. Polymers for Advanced Technologies, 2014, 25, 605-612.	1.6	20
88	Multigram-scale fabrication of organic modified MoS ₂ nanosheets dispersed in polystyrene with improved thermal stability, fire resistance, and smoke suppression properties. RSC Advances, 2014, 4, 40170-40180.	1.7	46
89	Comparative study on the effect of electron beam irradiation on the physical properties of ethylene-vinyl acetate copolymer composites. Radiation Physics and Chemistry, 2014, 97, 284-291.	1.4	15
90	Organic/inorganic flame retardants containing phosphorus, nitrogen and silicon: Preparation and their performance on the flame retardancy of epoxy resins as a novel intumescent flame retardant system. Materials Chemistry and Physics, 2014, 143, 1243-1252.	2.0	168

#	Article	IF	Citations
91	The influence of \hat{l} ±-FeOOH/rGO hybrids on the improved thermal stability and smoke suppression properties in polystyrene. Materials Research Bulletin, 2014, 53, 272-279.	2.7	27
92	Bismuth subcarbonate nanoplates for thermal stability, fire retardancy and smoke suppression applications in polymers: A new strategy. Polymer Degradation and Stability, 2014, 107, 1-9.	2.7	22
93	Flame retardancy and thermal properties of novel UV-curing epoxy acrylate coatings modified by phosphorus-containing hyperbranched macromonomer. Journal of Polymer Research, 2013, 20, 1.	1.2	17
94	Novel organic–inorganic flame retardants containing exfoliated graphene: preparation and their performance on the flame retardancy of epoxy resins. Journal of Materials Chemistry A, 2013, 1, 6822.	5.2	163
95	A facile method for preparation ZnO with different morphology and their optical property. Journal of Alloys and Compounds, 2013, 577, 389-394.	2.8	13
96	CuO/Graphene Nanohybrids: Preparation and Enhancement on Thermal Stability and Smoke Suppression of Polypropylene. Industrial & Engineering Chemistry Research, 2013, 52, 13654-13660.	1.8	58
97	Microencapsulated Ammonium Polyphosphate with Glycidyl Methacrylate Shell: Application to Flame Retardant Epoxy Resin. Industrial & Engineering Chemistry Research, 2013, 52, 5640-5647.	1.8	85
98	2D Lamellar Aluminophosphate Nanolayers for Enhancing Flame Retardancy and Mechanical Properties of Polymers. Industrial & Engineering Chemistry Research, 2013, 52, 16766-16773.	1.8	10
99	Facile preparation of Cu2O/carbon sphere heterostructure with high photocatalytic activity. Materials Letters, 2013, 98, 213-216.	1.3	18
100	The intercalation of poly(methyl methacrylate)/aluminophosphate nanocomposites and the properties improvement. Materials Chemistry and Physics, 2013, 141, 95-100.	2.0	5
101	A facile liquid phase exfoliation method to prepare graphene sheets with different sizes expandable graphite. Materials Research Bulletin, 2013, 48, 2985-2992.	2.7	32
102	Preparation of functionalized graphene by simultaneous reduction and surface modification and its polymethyl methacrylate composites through latex technology and melt blending. Chemical Engineering Journal, 2013, 226, 326-335.	6.6	75
103	Synthesis of a Novel Phosphorus- and Nitrogen-Containing Acrylate and Its Performance as an Intumescent Flame Retardant for Epoxy Acrylate. Industrial & Engineering Chemistry Research, 2013, 52, 17442-17450.	1.8	41
104	Synthesis of a Novel Triazine-Based Hyperbranched Char Foaming Agent and the Study of Its Enhancement on Flame Retardancy and Thermal Stability of Polypropylene. Industrial & Engineering Chemistry Research, 2013, 52, 17015-17022.	1.8	41
105	Preparation of silane precursor microencapsulated intumescent flame retardant and its enhancement on the properties of ethylene–vinyl acetate copolymer cable. Composites Science and Technology, 2012, 72, 1042-1048.	3.8	76
106	Effect of vinyl acetate content and electron beam irradiation on the flame retardancy, mechanical and thermal properties of intumescent flame retardant ethylene-vinyl acetate copolymer. Radiation Physics and Chemistry, 2012, 81, 308-315.	1.4	40
107	Effect of Cellulose Acetate Butyrate Microencapsulated Ammonium Polyphosphate on the Flame Retardancy, Mechanical, Electrical, and Thermal Properties of Intumescent Flame-Retardant Ethyleneâ€"Vinyl Acetate Copolymer/Microencapsulated Ammonium Polyphosphate/Polyamide-6 Blends. ACS Applied Materials & Diterfaces, 2011, 3, 3754-3761.	4.0	143
108	Preparation of Silane Precursor Microencapsulated Intumescent Flame Retardant and Its Application in Polypropylene Composites. Polymer-Plastics Technology and Engineering, 0, , .	1.9	2