Atsushi Yamaguchi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5098783/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Comparison of warm and cold years on the southeastern Bering Sea shelf and some implications for the ecosystem. Deep-Sea Research Part II: Topical Studies in Oceanography, 2012, 65-70, 31-45.	0.6	273
2	Community and trophic structures of pelagic copepods down to greater depths in the western subarctic Pacific (WEST-COSMIC). Deep-Sea Research Part I: Oceanographic Research Papers, 2002, 49, 1007-1025.	0.6	114
3	Enhanced role of eddies in the Arctic marine biological pump. Nature Communications, 2014, 5, 3950.	5.8	95
4	Long-Term Changes in Summer Zooplankton Communities of the Western Chukchi Sea, 1945–2012. Oceanography, 2015, 28, 100-115.	0.5	79
5	Trophic interactions of macro-zooplankton (krill and amphipods) in the Marginal Ice Zone of the Barents Sea. Deep-Sea Research Part II: Topical Studies in Oceanography, 2008, 55, 2266-2274.	0.6	68
6	Year-to-year changes of the mesozooplankton community in the Chukchi Sea during summers of 1991, 1992 and 2007, 2008. Polar Biology, 2011, 34, 1349-1360.	0.5	67
7	Structure and size distribution of plankton communities down to the greater depths in the western North Pacific Ocean. Deep-Sea Research Part II: Topical Studies in Oceanography, 2002, 49, 5513-5529.	0.6	60
8	Vertical distribution, population structure and lifecycle of Eucalanus bungii (Copepoda: Calanoida) in the Oyashio region, with notes on its regional variations. Marine Biology, 2005, 146, 497-511.	0.7	54
9	Lethality of increasing CO2 levels on deep-sea copepods in the western North Pacific. Journal of Oceanography, 2006, 62, 185-196.	0.7	53
10	Latitudinal Differences in the Planktonic Biomass and Community Structure Down to the Greater Depths in the Western North Pacific. Journal of Oceanography, 2004, 60, 773-787.	0.7	49
11	Two forms of secreted and thermostable luciferases from the marine copepod crustacean, Metridia pacifica. Gene, 2008, 425, 28-35.	1.0	49
12	Evolution of Bioluminescence in Marine Planktonic Copepods. Molecular Biology and Evolution, 2012, 29, 1669-1681.	3.5	48
13	Spatial variability of iron in the surface water of the northwestern North Pacific Ocean. Marine Chemistry, 2004, 86, 139-157.	0.9	47
14	Structure, biomass distribution and trophodynamics of the pelagic ecosystem in the Oyashio region, western subarctic Pacific. Journal of Oceanography, 2008, 64, 339-354.	0.7	44
15	Abundance and distribution of toxic Alexandrium tamarense resting cysts in the sediments of the Chukchi Sea and the eastern Bering Sea. Harmful Algae, 2013, 27, 52-59.	2.2	43
16	A novel yellowish-green fluorescent protein from the marine copepod, Chiridius poppei, and its use as a reporter protein in HeLa cells. Gene, 2006, 372, 18-25.	1.0	40
17	Possible spreading of toxic Alexandrium tamarense blooms on the Chukchi Sea shelf with the inflow of Pacific summer water due to climatic warming. Harmful Algae, 2017, 61, 80-86.	2.2	31
18	The seagrass Zostera marina harbors growth-inhibiting bacteria against the toxic dinoflagellate Alexandrium tamarense. Fisheries Science, 2014, 80, 353-362.	0.7	29

#	Article	IF	CITATIONS
19	Seasonal changes in mesozooplankton swimmers collected by sediment trap moored at a single station on the Northwind Abyssal Plain in the western Arctic Ocean. Journal of Plankton Research, 2014, 36, 490-502.	0.8	29
20	Chemical composition and energy content of deep-sea calanoid copepods in the Western North Pacific Ocean. Deep-Sea Research Part I: Oceanographic Research Papers, 2006, 53, 1791-1809.	0.6	28
21	Biomass size spectra of mesozooplankton in the Chukchi Sea during the summers of 1991/1992 and 2007/2008: an analysis using optical plankton counter data. ICES Journal of Marine Science, 2012, 69, 1205-1217.	1.2	27
22	Molecular Phylogeny of the Widely Distributed Marine Protists, Phaeodaria (Rhizaria, Cercozoa). Protist, 2015, 166, 363-373.	0.6	24
23	Abundance, biomass and life cycle patterns of euphausiids (Euphausia pacifica, Thysanoessa inspinata) Tj ETQq1 1 2009, 4, 43-52.	0.78431 0.2	4 rgBT /Ov∈ 23
24	Surface zooplankton size and taxonomic composition in Bowdoin Fjord, north-western Greenland: A comparison of ZooScan, OPC and microscopic analyses. Polar Science, 2019, 19, 120-129.	0.5	22
25	Interannual changes in the zooplankton community structure on the southeastern Bering Sea shelf during summers of 1994–2009. Deep-Sea Research Part II: Topical Studies in Oceanography, 2013, 94, 44-56.	0.6	21
26	Horizontal distribution of microprotist community structure in the western Arctic Ocean during late summer and early fall of 2010. Polar Biology, 2014, 37, 1185-1195.	0.5	21
27	Computational analysis and functional expression of ancestral copepod luciferase. Gene, 2013, 528, 201-205.	1.0	20
28	Contrasting assemblages of seabirds in the subglacial meltwater plume and oceanic water of Bowdoin Fjord, northwestern Greenland. ICES Journal of Marine Science, 2020, 77, 711-720.	1.2	20
29	Biomass and chemical composition of net-plankton down to greater depths (0–5800m) in the western North Pacific Ocean. Deep-Sea Research Part I: Oceanographic Research Papers, 2005, 52, 341-353.	0.6	18
30	Spatial changes in the vertical distribution of calanoid copepods down to great depths in the North Pacific. Zoological Studies, 2015, 54, e13.	0.3	17
31	Aulographis japonica sp. nov. (Phaeodaria, Aulacanthida, Aulacanthidae), an abundant zooplankton in the deep sea of the Sea of Japan. Plankton and Benthos Research, 2013, 8, 107-115.	0.2	17
32	Population structure, egg production and gut content pigment of large grazing copepods during the spring phytoplankton bloom in the Oyashio region. Deep-Sea Research Part II: Topical Studies in Oceanography, 2010, 57, 1679-1690.	0.6	16
33	Spatial and temporal changes in zooplankton abundance, biovolume, and size spectra in the neighboring waters of Japan: analyses using an optical plankton counter. Zoological Studies, 2015, 54, e18.	0.3	16
34	Rapidly changing glaciers, ocean and coastal environments, and their impact on human society in the Qaanaaq region, northwestern Greenland. Polar Science, 2021, 27, 100632.	0.5	15
35	Horizontal distribution of calanoid copepods in the western Arctic Ocean during the summer of 2008. Polar Science, 2012, 6, 105-119.	0.5	14
36	Vertical changes in abundance, biomass and community structure of copepods down to 3000m in the southern Bering Sea. Deep-Sea Research Part I: Oceanographic Research Papers, 2010, 57, 965-977.	0.6	13

Атѕизні Үамадисні

#	Article	IF	CITATIONS
37	Spatial and geographical changes in the mesozooplankton community in the Bering and Chukchi Seas during the summers of 2007 and 2008. Polar Science, 2016, 10, 335-345.	0.5	13
38	Seasonal distribution of short-tailed shearwaters and their prey in the Bering and Chukchi seas. Biogeosciences, 2017, 14, 203-214.	1.3	13
39	The community composition of diatom resting stages in sediments of the northern Bering Sea in 2017 and 2018: the relationship to the interannual changes in the extent of the sea ice. Polar Biology, 2019, 42, 1915-1922.	0.5	13
40	Diel and ontogenetic variations in vertical distributions of large grazing copepods during the spring phytoplankton bloom in the Oyashio region. Deep-Sea Research Part II: Topical Studies in Oceanography, 2010, 57, 1691-1702.	0.6	12
41	Metabolism and elemental composition of the euphausiids Euphausia pacifica and Thysanoessa inspinata during the phytoplankton bloom season in the Oyashio region, western subarctic Pacific Ocean. Deep-Sea Research Part II: Topical Studies in Oceanography, 2010, 57, 1733-1741.	0.6	12
42	Distribution of viable resting stage cells of diatoms in sediments and water columns of the Chukchi Sea, Arctic Ocean. Phycologia, 2018, 57, 440-452.	0.6	12
43	Reproductive success of Pacific copepods in the Arctic Ocean and the possibility of changes in the Arctic ecosystem. Polar Biology, 2015, 38, 1075-1079.	0.5	11
44	Seasonal changes in the population structure of dominant planktonic copepods collected using a sediment trap moored in the western Arctic Ocean. Journal of Natural History, 2015, 49, 2711-2726.	0.2	11
45	The physiological adaptations and toxin profiles of the toxic Alexandrium fundyense on the eastern Bering Sea and Chukchi Sea shelves. Harmful Algae, 2017, 63, 13-22.	2.2	11
46	Abundance, development stage, and size of decapod larvae through the Bering and Chukchi Seas during summer. Polar Biology, 2017, 40, 1805-1819.	0.5	11
47	Spatial changes in the summer diatom community of the northern Bering Sea in 2017 and 2018. Deep-Sea Research Part II: Topical Studies in Oceanography, 2020, 181-182, 104903.	0.6	11
48	Abundance and community structure of chaetognaths from the epipelagic through abyssopelagic zones in the western North Pacific and its adjacent seas. Plankton and Benthos Research, 2007, 2, 184-197.	0.2	10
49	Abundance and biomass of mesozooplankton along north-south transects (165^ ^deg;E and) Tj ETQq1 1 0.784 and Benthos Research, 2010, 5, 123-130.	314 rgBT 0.2	Overlock 10 10
50	Interannual and latitudinal changes in zooplankton abundance, biomass and size composition along a central North Pacific transect during summer: analyses with an Optical Plankton Counter. Plankton and Benthos Research, 2012, 7, 64-74.	0.2	10
51	Variation in assimilation efficiencies of dominant Neocalanus and Eucalanus copepods in the subarctic Pacific: Consequences for population structure models. Journal of Experimental Marine Biology and Ecology, 2013, 449, 321-329.	0.7	10
52	Short-term changes in a microplankton community in the Chukchi Sea during autumn: consequences of a strong wind event. Biogeosciences, 2016, 13, 913-923.	1.3	10
53	Regional patterns and controlling factors on summer population structure of Calanus glacialis in the western Arctic Ocean. Polar Science, 2016, 10, 503-510.	0.5	10
54	Seasonal phenology of four dominant copepods in the Pacific sector of the Arctic Ocean: Insights from statistical analyses of sediment trap data. Polar Science, 2019, 19, 94-111.	0.5	10

Атѕизні Үамадисні

#	Article	IF	CITATIONS
55	Review of spatial and inter-annual changes in the zooplankton community structure in the western Arctic Ocean during summers of 2008–2017. Progress in Oceanography, 2020, 186, 102391.	1.5	10
56	First record of the larvae of tanner crab Chionoecetes bairdi in the Chukchi Sea: A future northward expansion in the Arctic?. Polar Science, 2018, 16, 86-89.	0.5	9
57	Distribution of Harmful Algal Growth-Limiting Bacteria on Artificially Introduced Ulva and Natural Macroalgal Beds. Applied Sciences (Switzerland), 2020, 10, 5658.	1.3	9
58	<p class="ZootaxaTitle">Community structure and seasonal changes in population structure of pelagic polychaetes collected by sediment traps moored in the subarctic and subtropical western North Pacific Ocean</p> . Zoosymposia, 2020, 19, 41-50.	0.3	9
59	Evidence of increased toxic Alexandrium tamarense dinoflagellate blooms in the eastern Bering Sea in the summers of 2004 and 2005. PLoS ONE, 2017, 12, e0188565.	1.1	8
60	Comparisons between POC and zooplankton swimmer flux from sediment traps in the subarctic and subtropical North Pacific. Deep-Sea Research Part I: Oceanographic Research Papers, 2018, 133, 19-26.	0.6	8
61	Seasonal changes in the zooplankton community and population structure in the northern Bering Sea from June to September, 2017. Deep-Sea Research Part II: Topical Studies in Oceanography, 2020, 181-182, 104901.	0.6	8
62	Response of Arctic biodiversity and ecosystem to environmental changes: Findings from the ArCS project. Polar Science, 2021, 27, 100533.	0.5	8
63	Population dynamics of the euphausiids Euphausia pacifica and Thysanoessa inspinata in the Oyashio region during the 2007 spring phytoplankton bloom. Deep-Sea Research Part II: Topical Studies in Oceanography, 2010, 57, 1727-1732.	0.6	7
64	Short-term changes in population structure and vertical distribution of mesopelagic copepods during the spring phytoplankton bloom in the Oyashio region. Deep-Sea Research Part I: Oceanographic Research Papers, 2012, 65, 100-112.	0.6	7
65	Yearly comparison of the planktonic chaetognath community in the Chukchi Sea in the summers of 1991 and 2007. Polar Science, 2019, 19, 112-119.	0.5	7
66	Timing of spring sea-ice retreat and summer seabird-prey associations in the northern Bering Sea. Deep-Sea Research Part II: Topical Studies in Oceanography, 2020, 181-182, 104898.	0.6	7
67	Effects of Early Sea-Ice Reduction on Zooplankton and Copepod Population Structure in the Northern Bering Sea During the Summers of 2017 and 2018. Frontiers in Marine Science, 2022, 9, .	1.2	7
68	Seasonal changes in zooplankton abundance, biomass, size structure and dominant copepods in the Oyashio region analysed by an optical plankton counter. Deep-Sea Research Part I: Oceanographic Research Papers, 2014, 91, 115-124.	0.6	6
69	Ecology, Morphology, Phylogeny and Taxonomic Revision of Giant Radiolarians, Orodaria ord. nov. (Radiolaria; Rhizaria; SAR). Protist, 2021, 172, 125808.	0.6	6
70	Distribution of Growth-Inhibiting Bacteria against the Toxic Dinoflagellate Alexandrium catenella (Group I) in Akkeshi-Ko Estuary and Akkeshi Bay, Hokkaido, Japan. Applied Sciences (Switzerland), 2021, 11, 172.	1.3	6
71	Oceanic Ecosystems Comparison Subarctic-Pacific (OECOS): West. Deep-Sea Research Part II: Topical Studies in Oceanography, 2010, 57, 1593-1594.	0.6	5
72	Seasonal variability of zooplankton size spectra at Mombetsu Harbour in the southern Okhotsk Sea during 2011: An analysis using an optical plankton counter. Regional Studies in Marine Science, 2018, 20, 34-44.	0.4	5

Атѕизні Үамадисні

#	Article	IF	CITATIONS
73	Seasonal variability of the protist community and production in the southern Okhotsk Sea revealed by weekly monitoring. Regional Studies in Marine Science, 2021, 43, 101683.	0.4	5
74	Ontogenetic vertical migration of the mesopelagic carnivorous copepod Paraeuchaeta spp. is related to their increase in body mass. Journal of Plankton Research, 2019, 41, 791-797.	0.8	4
75	Abundance, horizontal and vertical distribution of epipelagic ctenophores and scyphomedusae in the northern Bering Sea in summer 2017 and 2018: Quantification by underwater video imaging analysis. Deep-Sea Research Part II: Topical Studies in Oceanography, 2020, 181-182, 104818.	0.6	4
76	Vertical distribution, population structure and developmental characteristics of the less studied but globally distributed mesopelagic copepod <i>Scaphocalanus magnus</i> in the western Arctic Ocean. Journal of Plankton Research, 2020, 42, 368-377.	0.8	4
77	Vertical changes in abundance, biomass and community structure of pelagic polychaetes down to 1000Âm depths at Station K2 in the western subarctic Pacific Ocean covering the four seasons and day–night. Journal of Plankton Research, 2021, 43, 442-457.	0.8	4
78	Causes of under- or overestimation of zooplankton biomass using Optical Plankton Counter (OPC): effect of size and taxa. Plankton and Benthos Research, 2009, 4, 154-159.	0.2	4
79	Short-term changes in abundance and population structure of dominant pelagic amphipod species in the Oyashio region during the spring phytoplankton bloom. Regional Studies in Marine Science, 2016, 3, 154-162.	0.4	3
80	A light in the dark: ecology, evolution and molecular basis of copepod bioluminescence. Journal of Plankton Research, 2017, 39, 369-378.	0.8	3
81	<i>Gazelletta kashiwaensis</i> sp. nov. (Medusettidae, Phaeodaria, Cercozoa), Its Morphology, Phylogeny, Distribution, and Feeding Behavior. Journal of Eukaryotic Microbiology, 2018, 65, 923-927.	0.8	3
82	Seasonal changes in the community structure of chaetognaths and the life cycle of the dominant chaetognath <i>Eukrohnia hamata</i> in the Oyashio region, western subarctic Pacific. Plankton and Benthos Research, 2020, 15, 146-155.	0.2	3
83	Vertical distribution, standing stocks, and taxonomic accounts of the entire plankton community, and the estimation of vertical material flux via faecal pellets in the southern Okhotsk Sea. Deep-Sea Research Part I: Oceanographic Research Papers, 2022, 185, 103771.	0.6	3
84	Seasonal and inter-species comparison of asymmetry in the genital system of some species of the oceanic copepod genus Metridia (Copepoda, Calanoida). Crustaceana, 2015, 88, 1307-1321.	0.1	2
85	Inter-oceanic comparison of planktonic copepod ecology (vertical distribution, abundance,) Tj ETQq1 1 0.78431 region in autumn. Journal of Natural History, 2015, 49, 2743-2757.	4 rgBT /O 0.2	verlock 10 Tf 3 2
86	Distribution of Arctic and Pacific copepods and their habitat in the northern Bering and Chukchi seas. Biogeosciences, 2016, 13, 4555-4567.	1.3	2
87	Usefulness of deep-ocean water pumping for the seasonal monitoring of mesozooplankton. Regional Studies in Marine Science, 2016, 3, 18-24.	0.4	2
88	Regional comparison of seasonal changes on copepod community structure in the Arctic Ocean. Polar Science, 2020, 24, 100509.	0.5	2
89	Between-year comparison of interactions between environmental parameters and various plankton stocks in the northern Bering Sea during the summers of 2017 and 2018. Polar Science, 2021, 27, 100555.	0.5	2
90	Descriptions of the copepodid stages of the mesopelagic copepod, Gaetanus variabilis (Brodsky, 1950) (Calanoida, Aetideidae) from the Japan Sea. Crustaceana, 2005, 78, 819-837.	0.1	1

#	Article	IF	CITATIONS
91	Seasonal abundance, population structure, sex ratio and gonad maturation of Metridia okhotensis Brodsky, 1950 inÂthe Okhotsk Sea: analysis of samples collected byÂpumping up from deep water. Crustaceana, 2016, 89, 151-161.	0.1	1
92	Two species of seabirds foraged in contrasting marine habitats across the cold-water belt along the coast of northern Hokkaido in the southwestern Okhotsk Sea. Fisheries Science, 2022, 88, 109-118.	0.7	1
93	Comparative ecology of three dominant pelagic chaetognaths (EukrohniaÂhamata , ParasagittaÂelegans ,) Tj ET	Qq1 1 0.78 0.4	34314 rgB⊺ 0

Studies in Marine Science, 2016, 8, 122-132.