
Jocelyne Just

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5098723/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effect of 17q21 Variants and Smoking Exposure in Early-Onset Asthma. New England Journal of Medicine, 2008, 359, 1985-1994.	13.9	351
2	Comorbidity of eczema, rhinitis, and asthma in IgE-sensitised and non-IgE-sensitised children in MeDALL: a population-based cohort study. Lancet Respiratory Medicine,the, 2014, 2, 131-140.	5.2	250
3	Omalizumab effectiveness in patients with severe allergic asthma according to blood eosinophil count: the STELLAIR study. European Respiratory Journal, 2018, 51, 1702523.	3.1	186
4	Add-on omalizumab in children with severe allergic asthma: a 1-year real life survey. European Respiratory Journal, 2013, 42, 1224-1233.	3.1	160
5	Two novel, severe asthma phenotypes identified during childhood using a clustering approach. European Respiratory Journal, 2012, 40, 55-60.	3.1	146
6	Mechanisms of the Development of Allergy (MeDALL): Introducing novel concepts in allergy phenotypes. Journal of Allergy and Clinical Immunology, 2017, 139, 388-399.	1.5	145
7	Short-term health effects of particulate and photochemical air pollution in asthmatic children. European Respiratory Journal, 2002, 20, 899-906.	3.1	98
8	Real-life long-term omalizumab therapy in children with severe allergic asthma. European Respiratory Journal, 2015, 46, 856-859.	3.1	97
9	Novel severe wheezy young children phenotypes: Boys atopic multiple-trigger and girls nonatopic uncontrolled wheeze. Journal of Allergy and Clinical Immunology, 2012, 130, 103-110.e8.	1.5	94
10	Phenotypic determinants of uncontrolled asthma. Journal of Allergy and Clinical Immunology, 2009, 124, 681-687.e3.	1.5	88
11	Are allergic multimorbidities and IgE polysensitization associated with the persistence or reâ€occurrence of foetal type 2 signalling? The <scp>M</scp> e <scp>DALL</scp> hypothesis. Allergy: European Journal of Allergy and Clinical Immunology, 2015, 70, 1062-1078.	2.7	88
12	Anthropogenic Carbon Nanotubes Found in the Airways of Parisian Children. EBioMedicine, 2015, 2, 1697-1704.	2.7	88
13	17q21 variants modify the association between early respiratory infections and asthma. European Respiratory Journal, 2010, 36, 57-64.	3.1	87
14	Risk factors and characteristics of respiratory and allergic phenotypes in early childhood. Journal of Allergy and Clinical Immunology, 2012, 130, 389-396.e4.	1.5	85
15	Phenotyping asthma, rhinitis and eczema in <scp>M</scp> e <scp>DALL</scp> populationâ€based birth cohorts: an allergic comorbidity cluster. Allergy: European Journal of Allergy and Clinical Immunology, 2015, 70, 973-984.	2.7	79
16	Peanutâ€allergic patients in the <scp>MIRABEL</scp> survey: characteristics, allergists' dietary advice and lessons from real life. Clinical and Experimental Allergy, 2016, 46, 610-620.	1.4	78
17	Clinical phenotypes in asthma during childhood. Clinical and Experimental Allergy, 2017, 47, 848-855.	1.4	68
18	The Paris prospective birth cohort study: Which design and who participates?. European Journal of Epidemiology, 2007, 22, 203-210.	2.5	66

JOCELYNE JUST

#	Article	IF	CITATIONS
19	Neutrophilic Steroid-Refractory Recurrent Wheeze and Eosinophilic Steroid-Refractory Asthma in Children. Journal of Allergy and Clinical Immunology: in Practice, 2017, 5, 1351-1361.e2.	2.0	64
20	Childhood Allergic Asthma Is Not a Single Phenotype. Journal of Pediatrics, 2014, 164, 815-820.	0.9	62
21	Forced midexpiratory flow between 25% and 75% of forced vital capacity is associated with long-term persistence of asthma and poor asthma outcomes. Journal of Allergy and Clinical Immunology, 2016, 137, 1709-1716.e6.	1.5	57
22	The asthmaâ€rhinitis multimorbidity is associated with IgE polysensitization in adolescents and adults. Allergy: European Journal of Allergy and Clinical Immunology, 2018, 73, 1447-1458.	2.7	53
23	Specific IgE and IgG measured by the MeDALL allergen-chip depend on allergen and route of exposure: The EGEA study. Journal of Allergy and Clinical Immunology, 2017, 139, 643-654.e6.	1.5	52
24	New insights into the phenotypes of atopic dermatitis linked with allergies and asthma in children: An overview. Clinical and Experimental Allergy, 2018, 48, 919-934.	1.4	51
25	Clinical significance of bronchoalveolar eosinophils in childhood asthma. Journal of Allergy and Clinical Immunology, 2002, 110, 42-44.	1.5	50
26	Early-Onset Atopic Dermatitis in Children: Which Are the Phenotypes at Risk of Asthma? Results from the ORCA Cohort. PLoS ONE, 2015, 10, e0131369.	1.1	49
27	The emerging landscape of dynamic DNA methylation in early childhood. BMC Genomics, 2017, 18, 25.	1.2	49
28	Early polysensitization is associated with allergic multimorbidity in PARIS birth cohort infants. Pediatric Allergy and Immunology, 2016, 27, 831-837.	1.1	46
29	The sensitization pattern differs according to rhinitis and asthma multimorbidity in adults: the EGEA study. Clinical and Experimental Allergy, 2017, 47, 520-529.	1.4	45
30	Allergy and asthma prevention 2014. Pediatric Allergy and Immunology, 2014, 25, 516-533.	1.1	42
31	New perspectives of childhood asthma treatment with biologics. Pediatric Allergy and Immunology, 2019, 30, 159-171.	1.1	37
32	Three peanutâ€allergic/sensitized phenotypes with gender difference. Clinical and Experimental Allergy, 2016, 46, 1596-1604.	1.4	35
33	Preâ€treatment by omalizumab allows allergen immunotherapy in children and young adults with severe allergic asthma. Pediatric Allergy and Immunology, 2014, 25, 829-832.	1.1	34
34	Natural history of allergic sensitization in infants with earlyâ€onset atopic dermatitis: results from <scp>ORCA</scp> Study. Pediatric Allergy and Immunology, 2014, 25, 668-673.	1.1	33
35	Allergic sensitisation in early childhood: Patterns and related factors in PARIS birth cohort. International Journal of Hygiene and Environmental Health, 2016, 219, 792-800.	2.1	31
36	Asthma and allergic rhinitis risk depends on house dust mite specific IgE levels in PARIS birth cohort children. World Allergy Organization Journal, 2019, 12, 100057.	1.6	30

JOCELYNE JUST

#	Article	IF	CITATIONS
37	Food allergy phenotypes: The key to personalized therapy. Clinical and Experimental Allergy, 2017, 47, 1125-1137.	1.4	29
38	Traffic-related Air Pollution, Lung Function, and Host Vulnerability. New Insights from the PARIS Birth Cohort. Annals of the American Thoracic Society, 2018, 15, 599-607.	1.5	28
39	Wheeze phenotypes in young children have different courses during the preschool period. Annals of Allergy, Asthma and Immunology, 2013, 111, 256-261.e1.	0.5	27
40	Evidence for linkage of a new region (11p14) to eczema and allergic diseases. Human Genetics, 2008, 122, 605-614.	1.8	24
41	Is a slowâ€progression baked milk protocol of oral immunotherapy always a safe option for children with cow's milk allergy? A randomized controlled trial. Clinical and Experimental Allergy, 2017, 47, 1491-1496.	1.4	24
42	Casein-specific IL-4- and IL-13-secreting T cells: a tool to implement diagnosis of cow's milk allergy. Allergy: European Journal of Allergy and Clinical Immunology, 2014, 69, 1473-1480.	2.7	21
43	Asthma with multiple allergic comorbidities is associated with complete response to omalizumab. Clinical and Experimental Allergy, 2019, 49, 733-735.	1.4	21
44	Unsupervised trajectories of respiratory/allergic symptoms throughout childhood in the PARIS cohort. Pediatric Allergy and Immunology, 2019, 30, 315-324.	1.1	19
45	Mediterranean diet and lung function, sensitization, and asthma at school age: The PARIS cohort. Pediatric Allergy and Immunology, 2021, 32, 1437-1444.	1.1	19
46	The ANO3/MUC15 locus is associated with eczema in families ascertained through asthma. Journal of Allergy and Clinical Immunology, 2012, 129, 1547-1553.e3.	1.5	18
47	Omalizumab could be effective in children with severe eosinophilic nonâ€allergic asthma. Pediatric Allergy and Immunology, 2018, 29, 90-93.	1.1	18
48	Quantification of circulating house dust miteâ€specific <scp>IL</scp> â€4―and <scp>IL</scp> â€13â€secreting <scp>T</scp> cells correlates with rhinitis severity in asthmatic children and varies with the seasons. Clinical and Experimental Allergy, 2014, 44, 222-230.	1.4	17
49	Determinants of Allergic Rhinitis in Young Children with Asthma. PLoS ONE, 2014, 9, e97236.	1.1	16
50	Exhaled nitric oxide measurement confirms 2 severe wheeze phenotypes in young children from the Trousseau Asthma Program. Journal of Allergy and Clinical Immunology, 2012, 130, 1005-1007.e1.	1.5	15
51	Emergence of pollen food allergy syndrome in asthmatic children in Paris. Pediatric Allergy and Immunology, 2021, 32, 702-708.	1.1	15
52	Control of asthma by omalizumab: the role of <scp>CD</scp> 4 ⁺ Foxp3 ⁺ regulatory T cells. Clinical and Experimental Allergy, 2016, 46, 1614-1616.	1.4	14
53	Two Different Composite Markers Predict Severity and Threshold Dose in Peanut Allergy. Journal of Allergy and Clinical Immunology: in Practice, 2021, 9, 275-282.e1.	2.0	11
54	<scp>slgE</scp> and <scp>slgG</scp> to airborne atopic allergens: Coupled rather than inversely related responses. Allergy: European Journal of Allergy and Clinical Immunology, 2018, 73, 2239-2242.	2.7	10

JOCELYNE JUST

#	Article	IF	CITATIONS
55	Association between lung function of school age children and short-term exposure to air pollution and pollen: the PARIS cohort. Thorax, 2021, 76, 887-894.	2.7	10
56	Trajectories of IgE sensitization to allergen molecules from childhood to adulthood and respiratory health in the EGEA cohort. Allergy: European Journal of Allergy and Clinical Immunology, 2022, 77, 609-618.	2.7	10
57	The <i><scp>COL</scp>5A3</i> and <i><scp>MMP</scp>9</i> genes interact in eczema susceptibility. Clinical and Experimental Allergy, 2018, 48, 297-305.	1.4	9
58	Gender, prick test size and rAra h 2 sIgE level may predict the eliciting dose in patients with peanut allergy: Evidence from the Mirabel survey. Clinical and Experimental Allergy, 2019, 49, 677-689.	1.4	9
59	The ILâ€4 rs2070874 polymorphism may be associated with the severity of recurrent viralâ€induced wheeze. Pediatric Pulmonology, 2017, 52, 1435-1442.	1.0	6
60	Questionnaire as an alternative of skin prick tests to differentiate allergic from nonâ€allergic rhinitis in epidemiological studies. Allergy: European Journal of Allergy and Clinical Immunology, 2021, 76, 2291-2294.	2.7	6
61	Infant feeding clusters are associated with respiratory health and allergy at school age in the PARIS birth cohort. Allergy: European Journal of Allergy and Clinical Immunology, 2021, 76, 1223-1234.	2.7	5
62	Omalizumab Effectiveness in Severe Allergic Asthma with Multiple Allergic Comorbidities: A Post-Hoc Analysis of the STELLAIR Study. Journal of Asthma and Allergy, 2021, Volume 14, 1129-1138.	1.5	5
63	Subcutaneous allergen immunotherapy may be a suitable treatment for exacerbator allergic asthma. Annals of Allergy, Asthma and Immunology, 2018, 121, 258-259.	0.5	4
64	Atopy is important in the management of asthma. Paediatric Respiratory Reviews, 2013, 14, 92-95.	1.2	3
65	Usefulness of r Ana o 3 assessment before oral food challenge to pistachio. Pediatric Allergy and Immunology, 2021, 32, 615-618.	1.1	3
66	Determinants of blood eosinophilia in moderate and severe asthmatic patients during childhood: Evidence from the severe asthma molecular phenotype (SAMP) cohort. Pediatric Allergy and Immunology, 2021, 32, 1217-1225.	1.1	3
67	Maintenance of Asthma Control in Adolescents with Severe Asthma After Transitioning to a Specialist Adult Centre: A French Cohort Experience. Journal of Asthma and Allergy, 2022, Volume 15, 327-340.	1.5	3
68	Benefits and risks of bronchoalveolar lavage in severe asthma in children. ERJ Open Research, 2021, 7, 00332-2021.	1.1	2
69	Immunothérapie orale au laitÂ: cru ou cuitÂ?. Revue Francaise D'allergologie, 2017, 57, 499-502.	0.1	1
70	Trajectoire allergique au cours de l'enfance et diversité de la réponse IgE. Revue Francaise D'allergologie, 2018, 58, 165-166.	0.1	0
71	Prise en charge en 2019Âdes manifestations atopiques de l'enfant. Revue Francaise D'allergologie, 2019, 59, 182-184.	0.1	0
72	Phénotypes des maladies allergiques vus par l'allergologie moléculaireÂ: les leçons des cohortes du monde. Revue Francaise D'allergologie, 2020, 60, 282-284.	0.1	0

#	Article	IF	CITATIONS
73	An algorithm to safely manage oral food challenge in an office-based setting for children with multiple food allergies. Archives of Asthma Allergy and Immunology, 2021, 5, 030-037.	0.1	0
74	Nouveaux phénotypes et endotypes des maladies allergiques respiratoires. Bulletin De L'Academie Nationale De Medecine, 2018, 202, 1127-1137.	0.0	0