Pavel JelÃ-nek

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5098531/publications.pdf

Version: 2024-02-01

171 papers 6,963 citations

45 h-index 78 g-index

181 all docs

181 docs citations

times ranked

181

5718 citing authors

#	Article	IF	CITATIONS
1	Chemical identification of individual surface atoms by atomic force microscopy. Nature, 2007, 446, 64-67.	27.8	649
2	Mechanism of high-resolution STM/AFM imaging with functionalized tips. Physical Review B, 2014, 90, .	3.2	438
3	Multicenter approach to the exchange-correlation interactions inab initiotight-binding methods. Physical Review B, 2005, 71, .	3.2	237
4	Complex Patterning by Vertical Interchange Atom Manipulation Using Atomic Force Microscopy. Science, 2008, 322, 413-417.	12.6	236
5	Advances and applications in the F <scp>IREBALL</scp> <i>ab initio</i> tightâ€binding molecularâ€dynamics formalism. Physica Status Solidi (B): Basic Research, 2011, 248, 1989-2007.	1.5	207
6	The effect of hydration number on the interfacial transport of sodium ions. Nature, 2018, 557, 701-705.	27.8	205
7	Origin of High-Resolution IETS-STM Images of Organic Molecules with Functionalized Tips. Physical Review Letters, 2014, 113, 226101.	7.8	165
8	Atomically precise bottom-up synthesis of π-extended [5]triangulene. Science Advances, 2019, 5, eaav7717.	10.3	159
9	New Insights on Atomic-Resolution Frequency-Modulation Kelvin-Probe Force-Microscopy Imaging of Semiconductors. Physical Review Letters, 2009, 103, 266103.	7.8	141
10	Optimized atomic-like orbitals for first-principles tight-binding molecular dynamics. Computational Materials Science, 2007, 39, 759-766.	3.0	132
11	Single Atomic Contact Adhesion and Dissipation in Dynamic Force Microscopy. Physical Review Letters, 2006, 96, 106101.	7.8	129
12	Interplay of Conductance, Force, and Structural Change in Metallic Point Contacts. Physical Review Letters, 2011, 106, 016802.	7.8	124
13	Mechanism for Room-Temperature Single-Atom Lateral Manipulations on Semiconductors using Dynamic Force Microscopy. Physical Review Letters, 2007, 98, 106104.	7.8	113
14	Weakly perturbative imaging of interfacial water with submolecular resolution by atomic force microscopy. Nature Communications, 2018, 9, 122.	12.8	105
15	From helical to planar chirality by on-surface chemistry. Nature Chemistry, 2017, 9, 213-218.	13.6	101
16	Mapping the electrostatic force field of single molecules from high-resolution scanning probe images. Nature Communications, 2016, 7, 11560.	12.8	95
17	Tailoring topological order and π-conjugation to engineer quasi-metallic polymers. Nature Nanotechnology, 2020, 15, 437-443.	31.5	95
18	High resolution SPM imaging of organic molecules with functionalized tips. Journal of Physics Condensed Matter, 2017, 29, 343002.	1.8	92

#	Article	IF	CITATIONS
19	First-principles simulations of STM images:â€,From tunneling to the contact regime. Physical Review B, 2004, 70, .	3.2	87
20	Theoretical analysis of electronic band structure of 2- to 3-nm Si nanocrystals. Physical Review B, $2013,87,.$	3.2	83
21	Forces and Currents in Carbon Nanostructures: Are We Imaging Atoms?. Physical Review Letters, 2011, 106, 176101.	7.8	81
22	Achieving High-Quality Single-Atom Nitrogen Doping of Graphene/SiC(0001) by Ion Implantation and Subsequent Thermal Stabilization. ACS Nano, 2014, 8, 7318-7324.	14.6	81
23	Chemical structure imaging of a single molecule by atomic force microscopy at room temperature. Nature Communications, 2015, 6, 7766.	12.8	81
24	â€~All-inclusive' imaging of the rutile TiO ₂ (110) surface using NC-AFM. Nanotechnology, 2009, 20, 505703.	2.6	80
25	Principles and simulations of high-resolution STM imaging with a flexible tip apex. Physical Review B, 2017, 95, .	3.2	76
26	Real topography, atomic relaxations, and short-range chemical interactions in atomic force microscopy: The case of theî±â^'Snâ^•Si(111)â^'(3×3)R30°surface. Physical Review B, 2006, 73, .	3.2	72
27	Real-space imaging of anisotropic charge of Ïf-hole by means of Kelvin probe force microscopy. Science, 2021, 374, 863-867.	12.6	71
28	Recognition tunneling. Nanotechnology, 2010, 21, 262001.	2.6	70
29			
	First-principles simulations of the stretching and final breaking of Al nanowires: Mechanical properties and electrical conductance. Physical Review B, 2003, 68, .	3.2	69
30	First-principles simulations of the stretching and final breaking of Al nanowires: Mechanical properties and electrical conductance. Physical Review B, 2003, 68, . Non-covalent control of spin-state in metal-organic complex by positioning on N-doped graphene. Nature Communications, 2018, 9, 2831.	3.2	69
30	Properties and electrical conductance. Physical Review B, 2003, 68, . Non-covalent control of spin-state in metal-organic complex by positioning on N-doped graphene.		
	Properties and electrical conductance. Physical Review B, 2003, 68, . Non-covalent control of spin-state in metal-organic complex by positioning on N-doped graphene. Nature Communications, 2018, 9, 2831. Control of Reactivity and Regioselectivity for On-Surface Dehydrogenative Aryl–Aryl Bond	12.8	68
31	properties and electrical conductance. Physical Review B, 2003, 68, . Non-covalent control of spin-state in metal-organic complex by positioning on N-doped graphene. Nature Communications, 2018, 9, 2831. Control of Reactivity and Regioselectivity for On-Surface Dehydrogenative Aryl–Aryl Bond Formation. Journal of the American Chemical Society, 2016, 138, 5585-5593. Simultaneous current, force and dissipation measurements on the Si(111) 7Ã−7 surface with an	12.8	68
31	Properties and electrical conductance. Physical Review B, 2003, 68, . Non-covalent control of spin-state in metal-organic complex by positioning on N-doped graphene. Nature Communications, 2018, 9, 2831. Control of Reactivity and Regioselectivity for On-Surface Dehydrogenative Aryl–Aryl Bond Formation. Journal of the American Chemical Society, 2016, 138, 5585-5593. Simultaneous current, force and dissipation measurements on the Si(111) 7×7 surface with an optimized qPlus AFM/STM technique. Beilstein Journal of Nanotechnology, 2012, 3, 249-259. Direct Bandgap Silicon: Tensile trained Silicon Nanocrystals. Advanced Materials Interfaces, 2014, 1,	12.8 13.7 2.8	68 67 66
31 32 33	Non-covalent control of spin-state in metal-organic complex by positioning on N-doped graphene. Nature Communications, 2018, 9, 2831. Control of Reactivity and Regioselectivity for On-Surface Dehydrogenative Aryl–Aryl Bond Formation. Journal of the American Chemical Society, 2016, 138, 5585-5593. Simultaneous current, force and dissipation measurements on the Si(111) 7×7 surface with an optimized qPlus AFM/STM technique. Beilstein Journal of Nanotechnology, 2012, 3, 249-259. Direct Bandgap Silicon: Tensileâ€6trained Silicon Nanocrystals. Advanced Materials Interfaces, 2014, 1, 1300042. Structural and Electronic Properties of Nitrogen-Doped Graphene. Physical Review Letters, 2016, 116,	12.8 13.7 2.8 3.7	68 67 66 65

#	Article	IF	CITATIONS
37	On-Surface Synthesis and Characterization of [7]Triangulene Quantum Ring. Nano Letters, 2021, 21, 861-867.	9.1	59
38	Silicene versus two-dimensional ordered silicide: Atomic and electronic structure of Si- <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mrow><mml:mo>(</mml:mo><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><m< th=""><th>sa;t≥> < mm</th><th>ıl:518n>19</th></m<></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:math>	s a;t≥ > < mm	ı l:518 n>19
39	Hydrogen Dissociation over Au Nanowires and the Fractional Conductance Quantum. Physical Review Letters, 2006, 96, 046803.	7.8	56
40	Combined AFM and STM measurements of a silicene sheet grown on the $Ag(111)$ surface. Journal of Physics Condensed Matter, 2013, 25, 225301.	1.8	56
41	Probing Charges on the Atomic Scale by Means of Atomic Force Microscopy. Physical Review Letters, 2015, 115, 076101.	7.8	56
42	van der Waals interactions mediating the cohesion of fullerenes on graphene. Physical Review B, 2012, 86, .	3.2	54
43	Understanding image contrast formation in TiO <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow></mml:mrow><mml:mn>2</mml:mn></mml:msub></mml:math> with force spectroscopy. Physical Review B, 2012, 85, .	3. 2	52
44	Submolecular Resolution Imaging of Molecules by Atomic Force Microscopy: The Influence of the Electrostatic Force. Physical Review Letters, 2016, 116, 096102.	7.8	51
45	Tip-Induced Reduction of the Resonant Tunneling Current on Semiconductor Surfaces. Physical Review Letters, 2008, 101, 176101.	7.8	47
46	Electronegativity determination of individual surface atoms by atomic force microscopy. Nature Communications, 2017, 8, 15155.	12.8	46
47	Ab initiostudy of evolution of mechanical and transport properties of clean and contaminated Au nanowires along the deformation path. Physical Review B, 2008, 77, .	3.2	44
48	Onâ€Surface Synthesis of Ethynyleneâ€Bridged Anthracene Polymers. Angewandte Chemie - International Edition, 2019, 58, 6559-6563.	13.8	44
49	Ultrahigh-yield on-surface synthesis and assembly of circumcoronene into a chiral electronic Kagome-honeycomb lattice. Science Advances, 2021, 7, .	10.3	43
50	Atomic Structure Affects the Directional Dependence of Friction. Physical Review Letters, 2013, 111, 126103.	7.8	40
51	Force mapping on a partially H-covered Si(111)-(7 <mml:math) 0.784314="" 1="" 10="" 192<="" 50="" etqq1="" overlock="" rgbt="" tf="" th="" tj=""><th>Td (xmlns 3.2</th><th>:mml="http: 38</th></mml:math)>	Td (xmlns 3.2	:mml="http: 38
52	Physical Review B. 2013, 87 Characteristic Contrast in î" <i>f</i> _{min} Maps of Organic Molecules Using Atomic Force Microscopy. ACS Nano, 2016, 10, 8517-8525.	14.6	37
53	Strainâ€Induced Isomerization in Oneâ€Dimensional Metal–Organic Chains. Angewandte Chemie - International Edition, 2019, 58, 18591-18597.	13.8	37
54	On-Surface Synthesis of Gold Porphyrin Derivatives via a Cascade of Chemical Interactions: Planarization, Self-Metalation, and Intermolecular Coupling. Chemistry of Materials, 2019, 31, 3248-3256.	6.7	37

#	Article	IF	CITATIONS
55	Electronic and Chemical Properties of Donor, Acceptor Centers in Graphene. ACS Nano, 2015, 9, 9180-9187.	14.6	36
56	Tailoring ¨i€-conjugation and vibrational modes to steer on-surface synthesis of pentalene-bridged ladder polymers. Nature Communications, 2020, 11, 4567.	12.8	36
57	Unravelling the Open-Shell Character of Peripentacene on Au(111). Journal of Physical Chemistry Letters, 2021, 12, 330-336.	4.6	36
58	Chemical Identification of Single Atoms in Heterogeneous III–IV Chains on Si(100) Surface by Means of nc-AFM and DFT Calculations. ACS Nano, 2012, 6, 6969-6976.	14.6	35
59	Role of Tip Chemical Reactivity on Atom Manipulation Process in Dynamic Force Microscopy. ACS Nano, 2013, 7, 7370-7376.	14.6	35
60	Understanding atomic-resolved STM images on TiO (sub) 2 ($l=10$)-(1 $l=10$) surface by DFT calculations. Nanotechnology, 2010, 21, 405702.	2.6	33
61	Large Converse Piezoelectric Effect Measured on a Single Molecule on a Metallic Surface. Journal of the American Chemical Society, 2018, 140, 940-946.	13.7	33
62	Diradical Organic Oneâ€Dimensional Polymers Synthesized on a Metallic Surface. Angewandte Chemie - International Edition, 2020, 59, 17594-17599.	13.8	33
63	Iron-based trinuclear metal-organic nanostructures on a surface with local charge accumulation. Nature Communications, 2018, 9, 3211.	12.8	31
64	On-Surface Strain-Driven Synthesis of Nonalternant Non-Benzenoid Aromatic Compounds Containing Four- to Eight-Membered Rings. Journal of the American Chemical Society, 2021, 143, 14694-14702.	13.7	31
65	Origin of contrast in STM images of oxygen on $Pd(111)$ and its dependence on tip structure and tunneling parameters. Physical Review B, 2005, 71, .	3.2	30
66	Submolecular Resolution by Variation of the Inelastic Electron Tunneling Spectroscopy Amplitude and its Relation to the AFM/STM Signal. Physical Review Letters, 2017, 119, 166001.	7.8	30
67	Donor–Acceptor Properties of a Single-Molecule Altered by On-Surface Complex Formation. ACS Nano, 2017, 11, 8413-8420.	14.6	30
68	Characterization of the mechanical properties of qPlus sensors. Beilstein Journal of Nanotechnology, 2013, 4, 1-9.	2.8	28
69	Sub-atomic' resolution of non-contact atomic force microscope images induced by a heterogeneous tip structure: a density functional theory study. Nanotechnology, 2011, 22, 295710.	2.6	26
70	Quantum Degeneracy in Atomic Point Contacts Revealed by Chemical Force and Conductance. Physical Review Letters, 2013, 111, 106803.	7.8	23
71	1D Coordination π–d Conjugated Polymers with Distinct Structures Defined by the Choice of the Transition Metal: Towards a New Class of Antiaromatic Macrocycles. Angewandte Chemie - International Edition, 2021, 60, 439-445.	13.8	23
72	Chemical Stability of (3,1)-Chiral Graphene Nanoribbons. ACS Nano, 2021, 15, 5610-5617.	14.6	23

#	Article	IF	CITATIONS
73	Charge Redistribution and Transport in Molecular Contacts. Physical Review Letters, 2015, 115, 136101.	7.8	22
74	Chemisorption-Induced Formation of Biphenylene Dimer on Ag(111). Journal of the American Chemical Society, 2022, 144, 723-732.	13.7	20
75	On-surface structural and electronic properties of spontaneously formed Tb ₂ Pc ₃ single molecule magnets. Nanoscale, 2018, 10, 15553-15563.	5.6	19
76	Strainâ€Induced Isomerization in Oneâ€Dimensional Metal–Organic Chains. Angewandte Chemie, 2019, 131, 18764-18770.	2.0	19
77	Heterochiral recognition among functionalized heptahelicenes on noble metal surfaces. Chemical Communications, 2019, 55, 10595-10598.	4.1	18
78	Quantum dissipation driven by electron transfer within a single molecule investigated with atomic force microscopy. Nature Communications, 2020, 11, 1337.	12.8	18
79	Mechanical properties and electrical conductance of different Al nanowires submitted to an homogeneous deformation: a first-principles simulation. Surface Science, 2004, 566-568, 13-23.	1.9	17
80	Calculation of non-adiabatic coupling vectors in a local-orbital basis set. Journal of Chemical Physics, 2013, 138, 154106.	3.0	17
81	Interplay between Switching Driven by the Tunneling Current and Atomic Force of a Bistable Four-Atom Si Quantum Dot. Nano Letters, 2015, 15, 4356-4363.	9.1	17
82	Slow Relaxation of Surface Plasmon Excitations in Au ₅₅ : The Key to Efficient Plasmonic Heating in Au/TiO ₂ . Journal of Physical Chemistry Letters, 2016, 7, 1563-1569.	4.6	16
83	Bonding Motifs in Metal–Organic Compounds on Surfaces. Journal of the American Chemical Society, 2018, 140, 12884-12889.	13.7	16
84	Onâ€Surface Synthesis of Ethynyleneâ€Bridged Anthracene Polymers. Angewandte Chemie, 2019, 131, 6631-6635.	2.0	16
85	Universal behaviour in the final stage of the breaking process for metal nanowires. Nanotechnology, 2005, 16, 1023-1028.	2.6	15
86	Local atomic and electronic structure of the Pbâ-Si(111) mosaic phase: STM and ab initiostudy. Physical Review B, 2008, 77, .	3.2	15
87	Reversal of atomic contrast in scanning probe microscopy on (111) metal surfaces. Journal of Physics Condensed Matter, 2012, 24, 084003.	1.8	15
88	On-Surface Hydrogenation of Buckybowls: From Curved Aromatic Molecules to Planar Non-Kekulé Aromatic Hydrocarbons. ACS Nano, 2020, 14, 16735-16742.	14.6	15
89	Atomic Scale Control and Visualization of Topological Quantum Phase Transition in π onjugated Polymers Driven by Their Length. Advanced Materials, 2021, 33, e2104495.	21.0	15
90	Interplay between π-Conjugation and Exchange Magnetism in One-Dimensional Porphyrinoid Polymers. Journal of the American Chemical Society, 2022, 144, 12725-12731.	13.7	15

#	Article	IF	Citations
91	Study of Ferrocene Dicarboxylic Acid on Substrates of Varying Chemical Activity. Journal of Physical Chemistry C, 2016, 120, 21955-21961.	3.1	14
92	Diradical Organic Oneâ€Dimensional Polymers Synthesized on a Metallic Surface. Angewandte Chemie, 2020, 132, 17747-17752.	2.0	14
93	Resolving Ambiguity of the Kondo Temperature Determination in Mechanically Tunable Single-Molecule Kondo Systems. Journal of Physical Chemistry Letters, 2021, 12, 6320-6325.	4.6	14
94	On-Surface Synthesis of One-Dimensional Coordination Polymers with Tailored Magnetic Anisotropy. ACS Applied Materials & Diterfaces, 2021, 13, 32393-32401.	8.0	14
95	Synthesis and Characterization of <i>peri</i> i>â€Heptacene on a Metallic Surface. Angewandte Chemie - International Edition, 2022, 61, .	13.8	14
96	Corrections to the density-functional theory electronic spectrum: copper phthalocyanine. Applied Physics A: Materials Science and Processing, 2009, 95, 257-263.	2.3	13
97	Onâ€Surface Bottomâ€Up Synthesis of Azine Derivatives Displaying Strong Acceptor Behavior. Angewandte Chemie - International Edition, 2018, 57, 8582-8586.	13.8	13
98	Multiscale Analysis of Phase Transformations in Self-Assembled Layers of 4,4′-Biphenyl Dicarboxylic Acid on the Ag(001) Surface. ACS Nano, 2020, 14, 7269-7279.	14.6	13
99	Atomic-Scale Charge Distribution Mapping of Single Substitutional p- and n-Type Dopants in Graphene. ACS Sustainable Chemistry and Engineering, 2020, 8, 3437-3444.	6.7	13
100	Relation between the chemical force and the tunnelling current in atomic point contacts: a simple model. Journal of Physics Condensed Matter, 2012, 24, 084001.	1.8	12
101	Ortho and Para Hydrogen Dimers on G/SiC(0001): Combined STM and DFT Study. Langmuir, 2015, 31, 233-239.	3.5	12
102	Onâ€Surface Synthesis of a Dicationic Diazahexabenzocoronene Derivative on the Au(111) Surface. Angewandte Chemie - International Edition, 2021, 60, 25551-25556.	13.8	12
103	Visualizing designer quantum states in stable macrocycle quantum corrals. Nature Communications, 2021, 12, 5895.	12.8	12
104	Creation and annihilation of mobile fractional solitons in atomic chains. Nature Nanotechnology, 2022, 17, 244-249.	31.5	12
105	Experimental and theoretical studies of single Pb atom dynamics in one Si(111)-($7\tilde{A}$ –7) unit cell. Surface Science, 2003, 544, 339-347.	1.9	11
106	Calculated photo-isomerization efficiencies of functionalized azobenzene derivatives in solar energy materials: azo-functional organic linkers for porous coordinated polymers. Journal of Physics Condensed Matter, 2015, 27, 134208.	1.8	11
107	Nitrous oxide as an effective AFM tip functionalization: a comparative study. Beilstein Journal of Nanotechnology, 2019, 10, 315-321.	2.8	11
108	Mechano-Optical Switching of a Single Molecule with Doublet Emission. ACS Nano, 2020, 14, 8931-8938.	14.6	11

#	Article	IF	Citations
109	Significance Of Nuclear Quantum Effects In Hydrogen Bonded Molecular Chains. ACS Nano, 2021, 15, 10357-10365.	14.6	11
110	Atomic and electronic properties of the Pb/Mo(110) adsorption system. Physical Review B, 2009, 80, .	3.2	10
111	Graphene on SiC(0001) inspected by dynamic atomic force microscopy at room temperature. Beilstein Journal of Nanotechnology, 2015, 6, 901-906.	2.8	10
112	On-surface synthesis of doubly-linked one-dimensional pentacene ladder polymers. Chemical Communications, 2020, 56, 15309-15312.	4.1	10
113	Exploiting Cooperative Catalysis for the Onâ€Surface Synthesis of Linear Heteroaromatic Polymers via Selective C–H Activation. Angewandte Chemie - International Edition, 2022, 61, .	13.8	10
114	Si-substitutional defects on the î±-Sn/Si(111)-() surface. Applied Surface Science, 2004, 234, 286-291.	6.1	9
115	Theoretical study of electronic and transport properties of PPy–Pt(111) and PPy–C(111):H interfaces. Journal of Physics Condensed Matter, 2010, 22, 045003.	1.8	9
116	Room Temperature Discrimination of Adsorbed Molecules and Attachment Sites on the Si(111)–7 × 7 Surface Using a qPlus Sensor. ACS Nano, 2013, 7, 2686-2692.	14.6	9
117	Emergence of state at Fermi level due to the formation of In-Sn heterodimers on Si(100)- <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mn></mml:mn> Physical Review B. 2013. 88</mml:math>	o₩ ^{3;2} <th>ıl:math>.</th>	ıl:math>.
118	Initial and secondary oxidation products on the Si(111)-($7\hat{a}\in\%\tilde{A}-\hat{a}\in\%$ 7) surface identified by atomic force microscopy and first principles calculations. Applied Physics Letters, 2014, 104, 133107.	3.3	9
119	Identification of Surface Defects and Subsurface Dopants in a Delta-Doped System Using Simultaneous nc-AFM/STM and DFT. Journal of Physical Chemistry C, 2014, 118, 15744-15753.	3.1	9
120	Controlling Single Molecule Conductance by a Locally Induced Chemical Reaction on Individual Thiophene Units. Angewandte Chemie - International Edition, 2020, 59, 6207-6212.	13.8	9
121	Cumulene-like bridged indeno[1,2- <i>b</i>)]fluorene ï€-conjugated polymers synthesized on metal surfaces. Chemical Communications, 2021, 57, 7545-7548.	4.1	9
122	Mechanical and electrical properties of stretched clean and H-contaminated Pd-nanowires. Nanotechnology, 2008, 19, 335711.	2.6	8
123	Charge-state dynamics in electrostatic force spectroscopy. Nanotechnology, 2016, 27, 274005.	2.6	8
124	Aromatic Azide Transformation on the $Ag(111)$ Surface Studied by Scanning Probe Microscopy. Angewandte Chemie - International Edition, 2019, 58, 2266-2271.	13.8	8
125	Thermally induced intra-molecular transformation and metalation of free-base porphyrin on Au(111) surface steered by surface confinement and ad-atoms. Nanoscale Advances, 2020, 2, 2986-2991.	4.6	8
126	Photo-induced reactions from efficient molecular dynamics with electronic transitions using the FIREBALL local-orbital density functional theory formalism. Journal of Physics Condensed Matter, 2015, 27, 175002.	1.8	7

#	Article	IF	CITATIONS
127	Onâ€Surface Bottomâ€Up Synthesis of Azine Derivatives Displaying Strong Acceptor Behavior. Angewandte Chemie, 2018, 130, 8718-8722.	2.0	7
128	Controlling the stereospecific bonding motif of Au–thiolate links. Nanoscale, 2019, 11, 15567-15575.	5.6	7
129	Onâ€6urface Synthesis of Polyferrocenylene and its Singleâ€Chain Conformational and Electrical Transport Properties. Advanced Functional Materials, 2021, 31, 2006391.	14.9	7
130	Defect-Induced π-Magnetism into Non-Benzenoid Nanographenes. Nanomaterials, 2022, 12, 224.	4.1	7
131	Forceâ€Driven Singleâ€Atom Manipulation on a Lowâ€Reactive Si Surface for Tip Sharpening. Small, 2015, 11, 3686-3693.	10.0	6
132	Nature of Binding in Planar Halogen–Benzene Assemblies and Their Possible Visualization in Scanning Probe Microscopy. Journal of Physical Chemistry C, 2019, 123, 8379-8386.	3.1	6
133	Steering alkyne homocoupling with on-surface synthesized metal–organic complexes. Chemical Communications, 2020, 56, 8659-8662.	4.1	6
134	Onâ€Surface Synthesis of a Dicationic Diazahexabenzocoronene Derivative on the Au(111) Surface. Angewandte Chemie, 2021, 133, 25755-25760.	2.0	6
135	An Investigation of Ethylene Attachment to Si(111)–7 × 7 in the Restatom–Adatom Bridging Geometry: Electronic and Vibrational Properties. Journal of Physical Chemistry C, 2011, 115, 21791-21799.	3.1	5
136	Identification of Two-Dimensional FeO ₂ Termination of Bulk Hematite α-Fe ₂ O ₃ (0001) Surface. Journal of Physical Chemistry C, 2019, 123, 14312-14318.	3.1	5
137	Synthesis and Characterization of <i>peri</i> i>â€Heptacene on a Metallic Surface. Angewandte Chemie, 2022, 134, .	2.0	5
138	<i>Z</i> ₃ Charge Density Wave of Silicon Atomic Chains on a Vicinal Silicon Surface. ACS Nano, 2022, 16, 6598-6604.	14.6	5
139	Sub-angstrom noninvasive imaging of atomic arrangement in 2D hybrid perovskites. Science Advances, 2022, 8, eabj0395.	10.3	5
140	Computational modeling of turbulent melt flow in CdZnTe crystal growth. Computational Materials Science, 2002, 25, 316-328.	3.0	4
141	Monte-Carlo simulation of diffusion in a two barriers system. Surface Science, 2002, 516, 169-178.	1.9	4
142	Tuning the conductance of benzene-based single-molecule junctions. Organic Electronics, 2016, 34, 254-261.	2.6	4
143	Simple device for the growth of micrometer-sized monocrystalline single-layer graphene on SiC(0001). Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2018, 36, .	2.1	4
144	Systematic review and meta analysis of differential attrition between active and control arms in randomized controlled trials of lifestyle interventions in chronic disease. BMC Medical Research Methodology, 2021, 21, 122.	3.1	4

#	Article	IF	CITATIONS
145	Electronic Self-Passivation of Single Vacancy in Black Phosphorus via Ionization. Physical Review Letters, 2022, 128, 176801.	7.8	4
146	Stability, interaction and influence of domain boundaries in Ge/Si(111)-5 $\tilde{A}-5$. Journal of Physics Condensed Matter, 2012, 24, 445003.	1.8	3
147	Simultaneous nc-AFM/STM Measurements with Atomic Resolution. Nanoscience and Technology, 2015, , 29-49.	1.5	3
148	Stable Au–C bonds to the substrate for fullerene-based nanostructures. Beilstein Journal of Nanotechnology, 2017, 8, 1073-1079.	2.8	3
149	Interface dipoles of Ir(ppy) ₃ on Cu(111). Nanoscale, 2019, 11, 12695-12703.	5.6	3
150	Aromatic Azide Transformation on the $Ag(111)$ Surface Studied by Scanning Probe Microscopy. Angewandte Chemie, 2019, 131, 2288-2293.	2.0	3
151	Resolving Atomicâ€5cale Defects in Conjugated Polymers Onâ€6urfaces. Chemistry - A European Journal, 2022, 28, .	3.3	3
152	Non-adiabatic molecular dynamic simulations of opening reaction of molecular junctions. Nanotechnology, 2016, 27, 285202.	2.6	2
153	Imaging Charge DistributionÂWithin Molecules by Scanning ProbeÂMicroscopy. Springer Series in Surface Sciences, 2018, , 499-518.	0.3	2
154	Chiral Surface from Achiral Ingredients: Modification of $Cu(110)$ with Phthalic Acid. Journal of Physical Chemistry C, 2019, 123, 9121-9127.	3.1	2
155	Controlling Single Molecule Conductance by a Locally Induced Chemical Reaction on Individual Thiophene Units. Angewandte Chemie, 2020, 132, 6266-6271.	2.0	2
156	On-surface synthesis of organocopper metallacycles through activation of inner diacetylene moieties. Chemical Science, 2021, 12, 12806-12811.	7.4	2
157	Exploiting Cooperative Catalysis for the Onâ€surface Synthesis of Linear Heteroaromatic Polymers via Selective Câ€H Activation. Angewandte Chemie, 0, , .	2.0	2
158	Single atom diffusion of Pb on a Si(111)-7×7 surface. Surface Science, 2004, 566-568, 130-136.	1.9	1
159	Intra-atomic charge re-organization at the Pb–Si interface: Bonding mechanism at low coverage. Surface Science, 2009, 603, 2861-2869.	1.9	1
160	Study of uncertainties of height measurements of monoatomic steps on Si 5 $\tilde{A}-5$ using DFT. Measurement Science and Technology, 2017, 28, 034005.	2.6	1
161	Basic Mechanisms for Single Atom Manipulation in Semiconductor Systems with the FM-AFM. Nanoscience and Technology, 2009, , 227-249.	1.5	1
162	Solid state surfaces and interfaces. Open Physics, 2009, 7, .	1.7	0

#	Article	IF	CITATIONS
163	Titelbild: Aromatic Azide Transformation on the Ag(111) Surface Studied by Scanning Probe Microscopy (Angew. Chem. 8/2019). Angewandte Chemie, 2019, 131, 2179-2179.	2.0	O
164	Innenrù⁄4cktitelbild: Onâ€Surface Synthesis of Ethynyleneâ€Bridged Anthracene Polymers (Angew. Chem.) Tj ETQ	000 0 rgl	BT /Overlock
165	1D Coordination π–d Conjugated Polymers with Distinct Structures Defined by the Choice of the Transition Metal: Towards a New Class of Antiaromatic Macrocycles. Angewandte Chemie, 2021, 133, 443-449.	2.0	O
166	Assembly of Complex Nano-Structure from Single Atoms-Chemical Identification, Manipulation and Assembly by AFM Shinku/Journal of the Vacuum Society of Japan, 2007, 50, 181-183.	0.2	0
167	Chapter 4 Band Structure of Silicon Nanocrystals. , 2016, , 109-144.		O
168	Electronegativity Determination of Single Atoms by Atomic Force Microscopy. Hyomen Kagaku, 2017, 38, 341-346.	0.0	0
169	Atomic Scale Control and Visualization of Topological Quantum Phase Transition in Ï€â€Conjugated Polymers Driven by Their Length (Adv. Mater. 44/2021). Advanced Materials, 2021, 33, 2170349.	21.0	O
170	Innentitelbild: Synthesis and Characterization of <i>peri</i> i>â€Heptacene on a Metallic Surface (Angew.) Tj ETQq0	0.0 rgBT /	Overlock 10
171	(Invited) On-Surface Synthesis of Acene Polymers. ECS Meeting Abstracts, 2022, MA2022-01, 811-811.	0.0	O