Laurent M Matuana

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5098476/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Surface chemistry changes of weathered HDPE/wood-flour composites studied by XPS and FTIR spectroscopy. Polymer Degradation and Stability, 2004, 86, 1-9.	5.8	303
2	Cell morphology and property relationships of microcellular foamed pvc/wood-fiber composites. Polymer Engineering and Science, 1998, 38, 1862-1872.	3.1	223
3	Processing and cell morphology relationships for microcellular foamed PVC/wood-fiber composites. Polymer Engineering and Science, 1997, 37, 1137-1147.	3.1	180
4	Characterization of weathered wood–plastic composite surfaces using FTIR spectroscopy, contact angle, and XPS. Polymer Degradation and Stability, 2007, 92, 1883-1890.	5.8	164
5	Influence of interfacial interactions on the properties of PVC/cellulosic fiber composites. Polymer Composites, 1998, 19, 446-455.	4.6	158
6	Effect of processing method on surface and weathering characteristics of wood-flour/HDPE composites. Journal of Applied Polymer Science, 2004, 93, 1021-1030.	2.6	156
7	Photoaging and stabilization of rigid PVC/wood-fiber composites. Journal of Applied Polymer Science, 2001, 80, 1943-1950.	2.6	136
8	Ultraviolet weathering of photostabilized wood-flour-filled high-density polyethylene composites. Journal of Applied Polymer Science, 2003, 90, 2609-2617.	2.6	128
9	Surface chemistry and mechanical property changes of wood-flour/high-density-polyethylene composites after accelerated weathering. Journal of Applied Polymer Science, 2004, 94, 2263-2273.	2.6	126
10	Accelerated ultraviolet weathering of PVC/wood-flour composites. Polymer Engineering and Science, 2002, 42, 1657-1666.	3.1	124
11	Surface of cellulosic materials modified with functionalized polyethylene coupling agents. Journal of Applied Polymer Science, 2003, 88, 278-286.	2.6	121
12	Foam extrusion of high density polyethylene/wood-flour composites using chemical foaming agents. Journal of Applied Polymer Science, 2003, 88, 3139-3150.	2.6	120
13	Ultraviolet weathering of HDPE/wood-flour composites coextruded with a clear HDPE cap layer. Polymer Degradation and Stability, 2011, 96, 97-106.	5.8	118
14	Relationship between cell morphology and impact strength of microcellular foamed high-density polyethylene/polypropylene blends. Polymer Engineering and Science, 2004, 44, 1551-1560.	3.1	115
15	Effect of surface properties on the adhesion between PVC and wood veneer laminates. Polymer Engineering and Science, 1998, 38, 765-773.	3.1	112
16	Influence of photostabilizers on wood flour–HDPE composites exposed to xenon-arc radiation with and without water spray. Polymer Degradation and Stability, 2006, 91, 3048-3056.	5.8	109
17	Chemical modification of nanocellulose with canola oil fatty acid methyl ester. Carbohydrate Polymers, 2017, 169, 108-116.	10.2	104
18	Impact Modification of Polylactide with a Biodegradable Ethylene/Acrylate Copolymer. Macromolecular Materials and Engineering, 2010, 295, 802-811.	3.6	102

#	Article	IF	CITATIONS
19	Study of Cell Nucleation in Microcellular Poly(lactic acid) Foamed with Supercritical CO ₂ through a Continuous-Extrusion Process. Industrial & Engineering Chemistry Research, 2010, 49, 2186-2193.	3.7	102
20	Microcellular Foamed Wood-Plastic Composites by Different Processes: a Review. Macromolecular Materials and Engineering, 2007, 292, 113-127.	3.6	97
21	The effect of low levels of plasticizer on the rheological and mechanical properties of polyvinyl chloride/newsprint-fiber composites. Journal of Vinyl and Additive Technology, 1997, 3, 265-273.	3.4	85
22	Foaming of PS/wood fiber composites using moisture as a blowing agent. Polymer Engineering and Science, 2000, 40, 2124-2132.	3.1	85
23	Cell morphology of extrusion foamed poly(lactic acid) using endothermic chemical foaming agent. Bioresource Technology, 2009, 100, 5947-5954.	9.6	85
24	Water vapor and oxygen barrier properties of extrusion-blown poly(lactic acid)/cellulose nanocrystals nanocomposite films. Composites Part A: Applied Science and Manufacturing, 2018, 114, 204-211.	7.6	85
25	Novel coupling agents for PVC/wood-flour composites. Journal of Vinyl and Additive Technology, 2005, 11, 160-165.	3.4	77
26	Durability of wood flour-plastic composites exposed to accelerated freeze-thaw cycling. Part I. Rigid PVC matrix. Journal of Vinyl and Additive Technology, 2005, 11, 1-8.	3.4	71
27	Effects of impact modifiers on the properties of rigid PVC/wood-fiber composites. Journal of Vinyl and Additive Technology, 2000, 6, 153-157.	3.4	66
28	Performance of high lignin content cellulose nanocrystals in poly(lactic acid). Polymer, 2018, 135, 305-313.	3.8	59
29	Foaming of rigid PVC/wood-flour composites through a continuous extrusion process. Journal of Vinyl and Additive Technology, 2001, 7, 142-148.	3.4	48
30	Reinforcement of rigid PVC/woodâ€flour composites with multiâ€walled carbon nanotubes. Journal of Vinyl and Additive Technology, 2008, 14, 60-64.	3.4	47
31	Microcellular foaming of impact-modified rigid PVC/wood-flour composites. Journal of Vinyl and Additive Technology, 2001, 7, 67-75.	3.4	45
32	Manufacture of rigid PVC/wood-flour composite foams using moisture contained in wood as foaming agent. Journal of Vinyl and Additive Technology, 2002, 8, 264-270.	3.4	45
33	Polybutene as a matrix for wood plastic composites. Composites Science and Technology, 2010, 70, 167-172.	7.8	45
34	Thermal and mechanical properties of polypropylene/woodâ€flour composites. Journal of Applied Polymer Science, 2011, 119, 3321-3328.	2.6	45
35	Durability of wood flour-plastic composites exposed to accelerated freeze–thaw cycling. II. High density polyethylene matrix. Journal of Applied Polymer Science, 2006, 100, 35-39.	2.6	44
36	Trends in sustainable biobased packaging materials: a mini review. Materials Today Sustainability, 2021, 15, 100084.	4.1	40

LAURENT M MATUANA

#	Article	IF	CITATIONS
37	Continuous Blending Approach in the Manufacture of Epoxidized Soybeanâ€ <scp>P</scp> lasticized Poly(lactic acid) Sheets and Films. Macromolecular Materials and Engineering, 2014, 299, 622-630.	3.6	39
38	Fusion characteristics of rigid PVC/wood-flour composites by torque rheometry. Journal of Vinyl and Additive Technology, 2007, 13, 7-13.	3.4	37
39	Functionalization of wood particles through a reactive extrusion process. Journal of Applied Polymer Science, 2006, 101, 3131-3142.	2.6	34
40	Epoxidized soybean oilâ€plasticized poly(lactic acid) films performance as impacted by storage. Journal of Applied Polymer Science, 2016, 133, .	2.6	33
41	Recent research developments in wood plastic composites. Journal of Vinyl and Additive Technology, 2009, 15, 136-138.	3.4	30
42	Mold susceptibility of rigid PVC/wood-flour composites. Journal of Vinyl and Additive Technology, 2004, 10, 179-186.	3.4	29
43	Online measurement of rheological properties of PVC/wood-flour composites. Journal of Vinyl and Additive Technology, 2004, 10, 121-128.	3.4	29
44	Strategy To Produce Microcellular Foamed Poly(lactic acid)/Wood-Flour Composites in a Continuous Extrusion Process. Industrial & Engineering Chemistry Research, 2013, 52, 12032-12040.	3.7	29
45	Extrusion blown films of poly(lactic acid) chainâ€extended with food grade multifunctional epoxies. Polymer Engineering and Science, 2019, 59, 2211-2219.	3.1	29
46	Coextruded PVC/wood-flour composites with WPC cap layers. Journal of Vinyl and Additive Technology, 2008, 14, 197-203.	3.4	28
47	Thermoplastic modification of urea–formaldehyde wood adhesives to improve moisture resistance. Journal of Applied Polymer Science, 2006, 101, 4222-4229.	2.6	27
48	Performance of poly(lactic acid)/ cellulose nanocrystal composite blown films processed by two different compounding approaches. Polymer Engineering and Science, 2018, 58, 1965-1974.	3.1	27
49	Wood/plastic composites coâ€extruded with multiâ€walled carbon nanotubeâ€filled rigid poly(vinyl) Tj ETQq1 1	0.784314 3.1	rgBT /Overlo
50	Blown film extrusion of poly(lactic acid) without melt strength enhancers. Journal of Applied Polymer Science, 2017, 134, 45212.	2.6	26
51	A Factorial Design Applied to the Extrusion Foaming of Polypropylene/Wood-Flour Composites. Frontiers in Forests and Global Change, 2001, 20, 115-130.	1.1	25
52	Composite materials manufactured from wood particles modified through a reactive extrusion process. Polymer Composites, 2005, 26, 534-541.	4.6	23
53	Preparation and Characterization of the Nanocomposites from Chemically Modified Nanocellulose and Poly(lactic acid). Journal of Renewable Materials, 2017, 5, 410-422.	2.2	21
54	Surface texture and barrier performance of poly(lactic acid)–cellulose nanocrystal extruded ast films. Journal of Applied Polymer Science, 2019, 136, 47594.	2.6	19

LAURENT M MATUANA

#	Article	IF	CITATIONS
55	Amphiphilic Core/Shell Nanoparticles to Reduce Biocide Leaching From Treated Wood, 1 – Leaching and Biological Efficacy. Macromolecular Materials and Engineering, 2010, 295, 442-450.	3.6	18
56	Potential of extrusion-blown poly(lactic acid)/cellulose nanocrystals nanocomposite films for improving the shelf-life of a dry food product. Food Packaging and Shelf Life, 2021, 29, 100689.	7.5	18
57	Colorimetric and vibrational spectroscopic characterization of weathered surfaces of wood and rigid polyvinyl chloride–wood flour composite lumber. Wood Science and Technology, 2009, 43, 669-678.	3.2	16
58	Continuous extrusion production of microcellular rigid PVC. Journal of Vinyl and Additive Technology, 2009, 15, 211-218.	3.4	15
59	Influence of Lactic Acid Surface Modification of Cellulose Nanofibrils on the Properties of Cellulose Nanofibril Films and Cellulose Nanofibril–Poly(lactic acid) Composites. Biomolecules, 2021, 11, 1346.	4.0	14
60	Wirksamkeit zweier verschiedener Holzschutzmittel im Hinblick auf Pilzbefall und VerfÄ ¤ bung von WPCs. European Journal of Wood and Wood Products, 2007, 65, 331-334.	2.9	12
61	Modeling and optimization of formaldehyde-free wood composites using a Box-Behnken design. Polymer Composites, 2006, 27, 497-503.	4.6	11
62	Microcellular foaming of poly(lactic acid) branched with foodâ€grade chain extenders. Journal of Applied Polymer Science, 2021, 138, 50686.	2.6	11
63	Influence of processing conditions and material compositions on the performance of formaldehyde-free wood-based composites. Polymer Composites, 2006, 27, 599-607.	4.6	10
64	Estimation of modulus of elasticity of plastics and wood plastic composites using a Taber stiffness tester. Composites Science and Technology, 2011, 71, 67-70.	7.8	10
65	Statistical Optimization of Ternary Blends of Poly(lactic acid)/Ethylene Acrylate Copolymer/Wood Flour Composites. Macromolecular Materials and Engineering, 2012, 297, 167-175.	3.6	10
66	Improving gas barrier properties of sugarcaneâ€based <scp>LLDPE</scp> with cellulose nanocrystals. Journal of Applied Polymer Science, 2022, 139, 51515.	2.6	10
67	Influence of a stabilized cap layer on the photodegradation of coextruded high density polyethylene/woodâ€flour composites. Journal of Vinyl and Additive Technology, 2013, 19, 239-249.	3.4	9
68	Fracture toughness of poly(lactic acid)/ ethylene acrylate copolymer/woodâ€flour composite ternary blends. Polymer International, 2013, 62, 1053-1058.	3.1	7
69	Rigid PVC/(layered silicate) nanocomposites produced through a novel meltâ€blending approach. Journal of Vinyl and Additive Technology, 2009, 15, 77-86.	3.4	6
70	Effect of processing parameters on the quality of red oak flakes. International Wood Products Journal, 2017, 8, 139-143.	1.1	0