
Shubiao Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5098406/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cationic lipids and polymers mediated vectors for delivery of siRNA. Journal of Controlled Release, 2007, 123, 1-10.	9.9	389
2	Photothermal therapy. Journal of Controlled Release, 2020, 325, 52-71.	9.9	304
3	Lipoplex morphologies and their influences on transfection efficiency in gene delivery. Journal of Controlled Release, 2007, 123, 184-194.	9.9	285
4	Targeting strategies for superparamagnetic iron oxide nanoparticles in cancer therapy. Acta Biomaterialia, 2020, 102, 13-34.	8.3	148
5	Temperature-Sensitive Lipid-Coated Carbon Nanotubes for Synergistic Photothermal Therapy and Gene Therapy. ACS Nano, 2021, 15, 6517-6529.	14.6	129
6	A review on cationic lipids with different linkers for gene delivery. Advances in Colloid and Interface Science, 2018, 253, 117-140.	14.7	107
7	Correlation of the cytotoxic effects of cationic lipids with their headgroups. Toxicology Research, 2018, 7, 473-479.	2.1	89
8	RGD peptide-based non-viral gene delivery vectors targeting integrin α _v β ₃ for cancer therapy. Journal of Drug Targeting, 2019, 27, 1-11.	4.4	83
9	Drug delivery systems based on CD44-targeted glycosaminoglycans for cancer therapy. Carbohydrate Polymers, 2021, 251, 117103.	10.2	69
10	Microneedles for gene and drug delivery in skin cancer therapy. Journal of Controlled Release, 2021, 335, 158-177.	9.9	47
11	Stimuli-Responsive Polysaccharide Enveloped Liposome for Targeting and Penetrating Delivery of survivin-shRNA into Breast Tumor. ACS Applied Materials & Interfaces, 2020, 12, 22074-22087.	8.0	42
12	Tri-peptide cationic lipids for gene delivery. Journal of Materials Chemistry B, 2015, 3, 119-126.	5.8	41
13	Grafting Chitosan with Polyethylenimine in an Ionic Liquid for Efficient Gene Delivery. PLoS ONE, 2015, 10, e0121817.	2.5	35
14	Carrier strategies boost the application of CRISPR/Cas system in gene therapy. Exploration, 2022, 2, .	11.0	30
15	Integrin αvβ3-targeted liposomal drug delivery system for enhanced lung cancer therapy. Colloids and Surfaces B: Biointerfaces, 2021, 201, 111623.	5.0	28
16	Upconversion nanoparticles for bioimaging. Nanotechnology Reviews, 2017, 6, 233-242.	5.8	27
17	Acid-Triggered Release of Native Gemcitabine Conjugated in Polyketal Nanoparticles for Enhanced Anticancer Therapy. Biomacromolecules, 2020, 21, 803-814.	5.4	27
18	Chitosan enhanced gene delivery of cationic liposome via non-covalent conjugation. Biotechnology Letters, 2012, 34, 19-28.	2.2	26

Shubiao Zhang

#	Article	IF	CITATIONS
19	Conjugates of small targeting molecules to non-viral vectors for the mediation of siRNA. Acta Biomaterialia, 2016, 36, 21-41.	8.3	25
20	Toxicological exploration of peptide-based cationic liposomes in siRNA delivery. Colloids and Surfaces B: Biointerfaces, 2019, 179, 66-76.	5.0	24
21	Co-delivery of paclitaxel and anti-VEGF siRNA by tripeptide lipid nanoparticle to enhance the anti-tumor activity for lung cancer therapy. Drug Delivery, 2020, 27, 1397-1411.	5.7	22
22	Effects of sucrose ester structures on liposome-mediated gene delivery. Acta Biomaterialia, 2018, 72, 278-286.	8.3	21
23	pH/reduction dual-responsive hyaluronic acid-podophyllotoxin prodrug micelles for tumor targeted delivery. Carbohydrate Polymers, 2022, 288, 119402.	10.2	21
24	Sucrose ester based cationic liposomes as effective non-viral gene vectors for gene delivery. Colloids and Surfaces B: Biointerfaces, 2016, 145, 454-461.	5.0	19
25	Multiple-therapy strategies via polysaccharides-based nano-systems in fighting cancer. Carbohydrate Polymers, 2021, 269, 118323.	10.2	19
26	Targeted-delivery of siRNA via a polypeptide-modified liposome for the treatment of gp96 over-expressed breast cancer. Materials Science and Engineering C, 2021, 121, 111847.	7.3	18
27	Tumor immunotherapy and multi-mode therapies mediated by medical imaging of nanoprobes. Theranostics, 2021, 11, 7360-7378.	10.0	18
28	Synergistic effects of 7-O-geranylquercetin and siRNAs on the treatment of human breast cancer. Life Sciences, 2019, 227, 145-152.	4.3	17
29	Lipid and polymer mediated CRISPR/Cas9 gene editing. Journal of Materials Chemistry B, 2020, 8, 4369-4386.	5.8	16
30	Bifunctional cationic solid lipid nanoparticles of β-NaYF ₄ :Yb,Er upconversion nanoparticles coated with a lipid for bioimaging and gene delivery. RSC Advances, 2017, 7, 26633-26639.	3.6	15
31	Self-Assembly of Podophyllotoxin-Loaded Lipid Bilayer Nanoparticles for Highly Effective Chemotherapy and Immunotherapy via Downregulation of Programmed Cell Death Ligand 1 Production. ACS Nano, 2022, 16, 3943-3954.	14.6	14
32	7-O-geranylquercetin contributes to reverse P-gp-mediated adriamycin resistance in breast cancer. Life Sciences, 2019, 238, 116938.	4.3	12
33	Ceramide Regulates Anti-Tumor Mechanisms of Erianin in Androgen-Sensitive and Castration-Resistant Prostate Cancers. Frontiers in Oncology, 2021, 11, 738078.	2.8	12
34	Cancer Treatment with Liposomes Based Drugs and Genes Co-delivery Systems. Current Medicinal Chemistry, 2018, 25, 3319-3332.	2.4	11
35	pH-sensitive hyaluronic acid-targeted prodrug micelles constructed via a one-step reaction for enhanced chemotherapy. International Journal of Biological Macromolecules, 2022, 206, 489-500.	7.5	11
36	6â€Oâ€dodecylâ€chitosan carbamate–based pHâ€responsive polymeric micelles for gene delivery. Journal of Applied Polymer Science, 2015, 132, .	2.6	7

3

Shubiao Zhang

#	Article	IF	CITATIONS
37	Intra-Articular injection of acid-sensitive stearoxyl-ketal-dexamethasone microcrystals for long-acting arthritis therapy. Asian Journal of Pharmaceutical Sciences, 2021, 16, 213-221.	9.1	7
38	Dual stimuli-responsive saccharide core based nanocarrier for efficient Birc5-shRNA delivery. Journal of Materials Chemistry B, 2018, 6, 7530-7542.	5.8	6
39	Interaction kinetics of peptide lipids-mediated gene delivery. Journal of Nanobiotechnology, 2020, 18, 144.	9.1	6
40	Synthesis of Ag@GQD and their application in photoacoustic imaging and chemical/photothermal combination therapy and bacteriostasis. Journal of Materials Science, 2022, 57, 7056-7067.	3.7	6
41	Structure–activity relationships of pH-responsive and ionizable lipids for gene delivery. International Journal of Pharmaceutics, 2022, 617, 121596.	5.2	4
42	Application of "smart―multifunctional nanoprobes in tumor diagnosis and treatment. Journal of Materials Chemistry B, 2022, 10, 3601-3613.	5.8	4
43	Cationic Nanoparticulate System for Codelivery of MicroRNA-424 and Podophyllotoxin as a Multimodal Anticancer Therapy. Molecular Pharmaceutics, 2022, 19, 2092-2104.	4.6	4
44	Hyaluronic acid prodrug micelles for tumour therapy. Journal of Drug Targeting, 2022, 30, 22-30.	4.4	3
45	Precise in-situ detection of adsorption kinetics based on fiber-optic sensing with a Y-shaped batch vessel. Instrumentation Science and Technology, 2021, 49, 201-215.	1.8	1