Manu Ben-Johny

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5098156/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Calmodulin regulation (calmodulation) of voltage-gated calcium channels. Journal of General Physiology, 2014, 143, 679-692.	1.9	172
2	Mechanism of adrenergic CaV1.2 stimulation revealed by proximity proteomics. Nature, 2020, 577, 695-700.	27.8	163
3	Calcineurin determines toxic versus beneficial responses to α-synuclein. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E3544-52.	7.1	102
4	Conservation of Ca2+/Calmodulin Regulation across Na and Ca2+ Channels. Cell, 2014, 157, 1657-1670.	28.9	91
5	Apocalmodulin Itself Promotes Ion Channel Opening and Ca2+ Regulation. Cell, 2014, 159, 608-622.	28.9	81
6	Detecting stoichiometry of macromolecular complexes in live cells using FRET. Nature Communications, 2016, 7, 13709.	12.8	55
7	TPC2 polymorphisms associated with a hair pigmentation phenotype in humans result in gain of channel function by independent mechanisms. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E8595-E8602.	7.1	55
8	Quantifying macromolecular interactions in living cells using FRET two-hybrid assays. Nature Protocols, 2016, 11, 2470-2498.	12.0	50
9	Towards a Unified Theory of Calmodulin Regulation (Calmodulation) of Voltage-Gated Calcium and Sodium Channels. Current Molecular Pharmacology, 2015, 8, 188-205.	1.5	48
10	Adrenergic Ca _V 1.2 Activation via Rad Phosphorylation Converges at α _{1C} I-II Loop. Circulation Research, 2021, 128, 76-88.	4.5	39
11	An autism-associated mutation in CaV1.3 channels has opposing effects on voltage- and Ca2+-dependent regulation. Scientific Reports, 2016, 6, 27235.	3.3	31
12	Allosteric regulators selectively prevent Ca2+-feedback of CaV and NaV channels. ELife, 2018, 7, .	6.0	31
13	Ca2+-dependent regulation of sodium channels NaV1.4 and NaV1.5 is controlled by the post-IQ motif. Nature Communications, 2019, 10, 1514.	12.8	30
14	Bilobal architecture is a requirement for calmodulin signaling to Ca _V 1.3 channels. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E3026-E3035.	7.1	20
15	Structural architecture of the human NALCN channelosome. Nature, 2022, 603, 180-186.	27.8	18
16	Duplex signaling by CaM and Stac3 enhances CaV1.1 function and provides insights into congenital myopathy. Journal of General Physiology, 2018, 150, 1145-1161.	1.9	16
17	Fibroblast growth factor homologous factors tune arrhythmogenic late NaV1.5 current in calmodulin bindingâ $\epsilon^{\rm "}$ deficient channels. JCI Insight, 2020, 5, .	5.0	16
18	Spectral hallmark of auditory-tactile interactions in the mouse somatosensory cortex. Communications Biology, 2020, 3, 64.	4.4	15

Manu Ben-Johny

#	Article	IF	CITATIONS
19	Structural basis of cytoplasmic NaV1.5 and NaV1.4 regulation. Journal of General Physiology, 2021, 153,	1.9	15
20	Elementary mechanisms of calmodulin regulation of NaV1.5 producing divergent arrhythmogenic phenotypes. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, e2025085118.	7.1	13
21	Probing ion channel macromolecular interactions using fluorescence resonance energy transfer. Methods in Enzymology, 2021, 653, 319-347.	1.0	9
22	Fibroblast growth factor homologous factors serve as a molecular rheostat in tuning arrhythmogenic cardiac late sodium current. , 2022, 1, 1-13.		8
23	Development of high-affinity nanobodies specific for NaV1.4 and NaV1.5 voltage-gated sodium channel isoforms. Journal of Biological Chemistry, 2022, 298, 101763.	3.4	7
24	The molecular basis of the inhibition of CaV1 calcium-dependent inactivation by the distal carboxy tail. Journal of Biological Chemistry, 2021, 296, 100502.	3.4	6
25	A rendezvous with the queen of ion channels: Three decades of ion channel research by David T Yue and his Calcium Signals Laboratory. Channels, 2016, 10, 20-32.	2.8	5
26	CaV channels reject signaling from a second CaM in eliciting Ca2+-dependent feedback regulation. Journal of Biological Chemistry, 2020, 295, 14948-14962.	3.4	3
27	Cutting out the fat: Site-specific deacylation of an ion channel. Journal of Biological Chemistry, 2020, 295, 16497-16498.	3.4	2
28	A bridge from the endoplasmic reticulum to the plasma membrane comes into view. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2202254119.	7.1	2