Ying Tao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5098120/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Roles of Metal Ions in MXene Synthesis, Processing and Applications: A Perspective. Advanced Science, 2022, 9, e2200296.	11.2	44
2	Inâ€situ Polymerized Gel Polymer Electrolytes with High Roomâ€Temperature Ionic Conductivity and Regulated Na ⁺ Solvation Structure for Sodium Metal Batteries. Advanced Functional Materials, 2022, 32, .	14.9	31
3	Sieving carbons promise practical anodes with extensible low-potential plateaus for sodium batteries. National Science Review, 2022, 9, .	9.5	55
4	A Review of Compact Carbon Design for Supercapacitors with High Volumetric Performance. Small, 2021, 17, e2007548.	10.0	47
5	A new approach to produce polystyrene monoliths by gelation and capillary shrinkage. Science China Materials, 2021, 64, 2272-2279.	6.3	2
6	Reassembly of MXene Hydrogels into Flexible Films towards Compact and Ultrafast Supercapacitors. Advanced Functional Materials, 2021, 31, 2102874.	14.9	57
7	Selective Catalysis Remedies Polysulfide Shuttling in Lithium‣ulfur Batteries. Advanced Materials, 2021, 33, e2101006.	21.0	229
8	Dense organic molecules/graphene network anodes with superior volumetric and areal performance for asymmetric supercapacitors. Journal of Materials Chemistry A, 2020, 8, 461-469.	10.3	30
9	Constructing a High‣trength Solid Electrolyte Layer by In Vivo Alloying with Aluminum for an Ultrahighâ€Rate Lithium Metal Anode. Advanced Functional Materials, 2020, 30, 1907343.	14.9	83
10	Capillary shrinkage of graphene oxide hydrogels. Science China Materials, 2020, 63, 1870-1877.	6.3	41
11	Realizing High Volumetric Lithium Storage by Compact and Mechanically Stable Anode Designs. ACS Energy Letters, 2020, 5, 1986-1995.	17.4	72
12	A Corrosionâ€Resistant and Dendriteâ€Free Zinc Metal Anode in Aqueous Systems. Small, 2020, 16, e2001736.	10.0	354
13	Layered MXene Protected Lithium Metal Anode as an Efficient Polysulfide Blocker for Lithiumâ€ S ulfur Batteries. Batteries and Supercaps, 2020, 3, 892-899.	4.7	22
14	Supercapacitors: Packing Activated Carbons into Dense Graphene Network by Capillarity for High Volumetric Performance Supercapacitors (Adv. Sci. 14/2019). Advanced Science, 2019, 6, 1970086.	11.2	10
15	Fast Gelation of Ti ₃ C ₂ T <i>_x</i> MXene Initiated by Metal Ions. Advanced Materials, 2019, 31, e1902432.	21.0	389
16	Simple synthesis of TiNb6O17/C composite toward high-rate lithium storage. Journal of Materials Science, 2019, 54, 14825-14833.	3.7	8
17	Capillary Encapsulation of Metallic Potassium in Aligned Carbon Nanotubes for Use as Stable Potassium Metal Anodes. Advanced Energy Materials, 2019, 9, 1901427.	19.5	118
18	3D Macroscopic Architectures from Selfâ€Assembled MXene Hydrogels. Advanced Functional Materials, 2019, 29, 1903960.	14.9	360

Ying Tao

#	Article	IF	CITATIONS
19	Quantifying the Volumetric Performance Metrics of Supercapacitors. Advanced Energy Materials, 2019, 9, 1900079.	19.5	88
20	Building Carbonâ€Based Versatile Scaffolds on the Electrode Surface to Boost Capacitive Performance for Fiber Pseudocapacitors. Small, 2019, 15, e1900721.	10.0	26
21	Size Effects on the Mechanical Properties of Nanoporous Graphene Networks. Advanced Functional Materials, 2019, 29, 1900311.	14.9	20
22	Deactivating Defects in Graphenes with Al ₂ O ₃ Nanoclusters to Produce Longâ€Life and Highâ€Rate Sodiumâ€Ion Batteries. Advanced Energy Materials, 2019, 9, 1803078.	19.5	65
23	Graphitic Carbon Nitride Induced Microâ€Electric Field for Dendriteâ€Free Lithium Metal Anodes. Advanced Energy Materials, 2019, 9, 1803186.	19.5	147
24	Enhanced Roles of Carbon Architectures in High-Performance Lithium-Ion Batteries. Nano-Micro Letters, 2019, 11, 5.	27.0	56
25	Catalyzing polysulfide conversion by g-C3N4 in a graphene network for long-life lithium-sulfur batteries. Nano Research, 2018, 11, 3480-3489.	10.4	97
26	Caging tin oxide in three-dimensional graphene networks for superior volumetric lithium storage. Nature Communications, 2018, 9, 402.	12.8	227
27	Engineering Graphenes from the Nano- to the Macroscale for Electrochemical Energy Storage. Electrochemical Energy Reviews, 2018, 1, 139-168.	25.5	55
28	Dense Graphene Monolith for High Volumetric Energy Density Li–S Batteries. Advanced Energy Materials, 2018, 8, 1703438.	19.5	97
29	Advanced Materials for Capturing Particulate Matter: Progress and Perspectives. Small Methods, 2018, 2, 1800012.	8.6	82
30	Energy Storage: Disassembly–Reassembly Approach to RuO ₂ /Graphene Composites for Ultrahigh Volumetric Capacitance Supercapacitor (Small 30/2017). Small, 2017, 13, .	10.0	0
31	Disassembly–Reassembly Approach to RuO ₂ /Graphene Composites for Ultrahigh Volumetric Capacitance Supercapacitor. Small, 2017, 13, 1701026.	10.0	113
32	Improved performance of Li–Se battery based on a novel dual functional CNTs@graphene/CNTs cathode construction. Rare Metals, 2017, 36, 425-433.	7.1	15
33	Porous graphene oxide-based carbon artefact with high capacity for methylene blue adsorption. Adsorption, 2016, 22, 1043-1050.	3.0	15
34	Evolution of the effect of sulfur confinement in graphene-based porous carbons for use in Li–S batteries. Nanoscale, 2016, 8, 4447-4451.	5.6	69
35	Supercapacitors: A Metalâ€Free Supercapacitor Electrode Material with a Record High Volumetric Capacitance over 800 F cm ^{â^3} (Adv. Mater. 48/2015). Advanced Materials, 2015, 27, 7898-7898.	21.0	9
36	A Metalâ€Free Supercapacitor Electrode Material with a Record High Volumetric Capacitance over 800 F cm ^{â^'3} . Advanced Materials, 2015, 27, 8082-8087.	21.0	211

Ying Tao

#	Article	IF	CITATIONS
37	Towards superior volumetric performance: design and preparation of novel carbon materials for energy storage. Energy and Environmental Science, 2015, 8, 1390-1403.	30.8	364
38	3D Hollow Sn@Carbon-Graphene Hybrid Material as Promising Anode for Lithium-Ion Batteries. Journal of Nanomaterials, 2014, 2014, 1-6.	2.7	5
39	Reduction of Graphene Oxide by Hydrogen Sulfide: A Promising Strategy for Pollutant Control and as an Electrode for Liâ€ S Batteries. Advanced Energy Materials, 2014, 4, 1301565.	19.5	149
40	Unusual High Oxygen Reduction Performance in All-Carbon Electrocatalysts. Scientific Reports, 2014, 4, 6289.	3.3	67
41	Towards ultrahigh volumetric capacitance: graphene derived highly dense but porous carbons for supercapacitors. Scientific Reports, 2013, 3, 2975.	3.3	541
42	One-pot self-assembly of three-dimensional graphene macroassemblies with porous core and layered shell. Journal of Materials Chemistry, 2011, 21, 12352.	6.7	64
43	Conductive graphene-based macroscopic membrane self-assembled at a liquid–air interface. Journal of Materials Chemistry, 2011, 21, 3359.	6.7	46