Jos Mara Arandes

List of Publications by Citations

Source: https://exaly.com/author-pdf/5097883/jose-maria-arandes-publications-by-citations.pdf

Version: 2024-04-11

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

3,558 139 33 51 h-index g-index citations papers 4,072 143 5.29 5.9 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
139	Stable operation conditions for gas-solid contact regimes in conical spouted beds. <i>Industrial & Engineering Chemistry Research</i> , 1992 , 31, 1784-1792	3.9	185
138	Kinetic Modeling of Dimethyl Ether Synthesis in a Single Step on a CuOInOIAl2O3/FAl2O3 Catalyst. <i>Industrial & Engineering Chemistry Research</i> , 2007 , 46, 5522-5530	3.9	139
137	Opportunities and barriers for producing high quality fuels from the pyrolysis of scrap tires. Renewable and Sustainable Energy Reviews, 2016 , 56, 745-759	16.2	137
136	Effect of operating conditions on the synthesis of dimethyl ether over a CuO-ZnO-Al2O3/NaHZSM-5 bifunctional catalyst. <i>Catalysis Today</i> , 2005 , 107-108, 467-473	5.3	125
135	Dual coke deactivation pathways during the catalytic cracking of raw bio-oil and vacuum gasoil in FCC conditions. <i>Applied Catalysis B: Environmental</i> , 2016 , 182, 336-346	21.8	105
134	Stability of an acid activated carbon based bifunctional catalyst for the raw bio-oil hydrodeoxygenation. <i>Applied Catalysis B: Environmental</i> , 2017 , 203, 389-399	21.8	91
133	Transformation of Several Plastic Wastes into Fuels by Catalytic Cracking. <i>Industrial & amp;</i> Engineering Chemistry Research, 1997 , 36, 4523-4529	3.9	90
132	Pressure drop in conical spouted beds. <i>The Chemical Engineering Journal</i> , 1993 , 51, 53-60		75
131	Design factors of conical spouted beds and jet spouted beds. <i>Industrial & Engineering Chemistry Research</i> , 1993 , 32, 1245-1250	3.9	72
130	Effect of HZSM-5 Zeolite Addition to a Fluid Catalytic Cracking Catalyst. Study in a Laboratory Reactor Operating under Industrial Conditions. <i>Industrial & Engineering Chemistry Research</i> , 2000 , 39, 1917-1924	3.9	60
129	Enhancement of pyrolysis gasoline hydrogenation over Pd-promoted Ni/SiO2Al2O3 catalysts. <i>Fuel</i> , 2007 , 86, 2262-2274	7.1	59
128	Synergy in the Cracking of a Blend of Bio-oil and Vacuum Gasoil under Fluid Catalytic Cracking Conditions. <i>Industrial & Engineering Chemistry Research</i> , 2016 , 55, 1872-1880	3.9	57
127	Deactivating Species Deposited on PtPd Catalysts in the Hydrocracking of Light-Cycle Oil. <i>Energy & Mamp; Fuels</i> , 2012 , 26, 1509-1519	4.1	56
126	Regeneration of CuO-ZnO-Al2O3/FAl2O3 catalyst in the direct synthesis of dimethyl ether. <i>Applied Catalysis B: Environmental</i> , 2010 , 94, 108-116	21.8	56
125	Design and Operation of a Catalytic Polymerization Reactor in a Dilute Spouted Bed Regime. <i>Industrial & Engineering Chemistry Research</i> , 1997 , 36, 1637-1643	3.9	55
124	Revealing the pathways of catalyst deactivation by coke during the hydrodeoxygenation of raw bio-oil. <i>Applied Catalysis B: Environmental</i> , 2018 , 239, 513-524	21.8	54
123	Correlation for calculation of the gas dispersion coefficient in conical spouted beds. <i>Chemical Engineering Science</i> , 1995 , 50, 2161-2172	4.4	54

(2021-2015)

122	Upgrading model compounds and Scrap Tires Pyrolysis Oil (STPO) on hydrotreating NiMo catalysts with tailored supports. <i>Fuel</i> , 2015 , 145, 158-169	7.1	52	
121	Design and operation of a jet spouted bed reactor with continuous catalyst feed in the benzyl alcohol polymerization. <i>Industrial & Engineering Chemistry Research</i> , 1987 , 26, 1297-1304	3.9	52	
120	Study of Physical Mixtures of Cr2O3InO and ZSM-5 Catalysts for the Transformation of Syngas into Liquid Hydrocarbons. <i>Industrial & Engineering Chemistry Research</i> , 1998 , 37, 1211-1219	3.9	46	
119	Catalytic Cracking of Waxes Produced by the Fast Pyrolysis of Polyolefins. <i>Energy & Description</i> , 21, 561-569	4.1	45	
118	Preliminary studies on fuel production through LCO hydrocracking on noble-metal supported catalysts. <i>Fuel</i> , 2012 , 94, 504-515	7.1	44	
117	Expansion of spouted beds in conical contactors. <i>The Chemical Engineering Journal</i> , 1993 , 51, 45-52		44	
116	Role of Acidity in the Deactivation and Steady Hydroconversion of Light Cycle Oil on Noble Metal Supported Catalysts. <i>Energy & Description</i> 25, 3389-3399	4.1	41	
115	Isotherms of chemical adsorption of bases on solid catalysts for acidity measurement. <i>Journal of Chemical Technology and Biotechnology</i> , 1994 , 60, 141-146	3.5	40	
114	Aromatics reduction of pyrolysis gasoline (PyGas) over HY-supported transition metal catalysts. <i>Applied Catalysis A: General</i> , 2006 , 315, 101-113	5.1	39	
113	Thermal recycling of polystyrene and polystyrene-butadiene dissolved in a light cycle oil. <i>Journal of Analytical and Applied Pyrolysis</i> , 2003 , 70, 747-760	6	39	
112	Catalytic cracking of raw bio-oil under FCC unit conditions over different zeolite-based catalysts. Journal of Industrial and Engineering Chemistry, 2019 , 78, 372-382	6.3	38	
111	Recycled Plastics in FCC Feedstocks: Specific Contributions. <i>Industrial & Engineering Chemistry Research</i> , 1997 , 36, 4530-4534	3.9	37	
110	Effect of catalyst properties on the cracking of polypropylene pyrolysis waxes under FCC conditions. <i>Catalysis Today</i> , 2008 , 133-135, 413-419	5.3	35	
109	Effect of space velocity on the hydrocracking of Light Cycle Oil over a Pt P d/HY zeolite catalyst. <i>Fuel Processing Technology</i> , 2012 , 95, 8-15	7.2	34	
108	Calculation of the kinetics of deactivation by coke in an integral reactor for a triangular scheme reaction. <i>Chemical Engineering Science</i> , 1993 , 48, 1077-1087	4.4	34	
107	Prospects for Obtaining High Quality Fuels from the Hydrocracking of a Hydrotreated Scrap Tires Pyrolysis Oil. <i>Energy & Discounty of the Energy & Discounty of the Hydrocracking of a Hydrotreated Scrap Tires</i>	4.1	33	
106	Phosphorus-containing activated carbon as acid support in a bifunctional Pt B d catalyst for tire oil hydrocracking. <i>Catalysis Communications</i> , 2016 , 78, 48-51	3.2	33	
105	Waste Refinery: The Valorization of Waste Plastics and End-of-Life Tires in Refinery Units. A Review <i>Energy & Documents</i> , 2021, 35, 3529-3557	4.1	33	

104	Simulation and multiplicity of steady states in fluidized FCCUs. <i>Chemical Engineering Science</i> , 1992 , 47, 2535-2540	4.4	32
103	Effect of the support acidity on the aromatic ring-opening of pyrolysis gasoline over Pt/HZSM-5 catalysts. <i>Catalysis Today</i> , 2009 , 143, 115-119	5.3	30
102	HZSM-5 Zeolite As Catalyst Additive for Residue Cracking under FCC Conditions. <i>Energy & amp; Fuels</i> , 2009 , 23, 4215-4223	4.1	30
101	Fuel production by cracking of polyolefins pyrolysis waxes under fluid catalytic cracking (FCC) operating conditions. <i>Waste Management</i> , 2019 , 93, 162-172	8.6	29
100	Factors influencing the thioresistance of nickel catalysts in aromatics hydrogenation. <i>Applied Catalysis A: General</i> , 2007 , 317, 20-33	5.1	29
99	Modelling FCC units under steady and unsteady state conditions. <i>Canadian Journal of Chemical Engineering</i> , 2000 , 78, 111-123	2.3	29
98	Catalyst used in fluid catalytic cracking (FCC) unit as a support of NiMoP catalyst for light cycle oil hydroprocessing. <i>Fuel</i> , 2018 , 216, 142-152	7.1	29
97	Effect of Atmospheric Residue Incorporation in the Fluidized Catalytic Cracking (FCC) Feed on Product Stream Yields and Composition. <i>Energy & Energy & Ener</i>	4.1	28
96	Effect of HZSM-5 catalyst addition on the cracking of polyolefin pyrolysis waxes under FCC conditions. <i>Chemical Engineering Journal</i> , 2007 , 132, 17-26	14.7	28
95	Calculation of the kinetics of deactivation by coke of a silica-alumina catalyst in the dehydration of 2-ethylhexanol. <i>Industrial & Engineering Chemistry Research</i> , 1993 , 32, 458-465	3.9	27
94	Designing supported ZnNi catalysts for the removal of oxygen from bio-liquids and aromatics from diesel. <i>Green Chemistry</i> , 2012 , 14, 2759	10	25
93	Effect of the operating conditions on the conversion of syngas into liquid hydrocarbons over a Cr2O3InO/ZSM5 bifunctional catalyst. <i>Journal of Chemical Technology and Biotechnology</i> , 1998 , 72, 190-196	3.5	24
92	Cracking of Scrap Tires Pyrolysis Oil in a Fluidized Bed Reactor under Catalytic Cracking Unit Conditions. Effects of Operating Conditions. <i>Energy & Discourse States Service States Service States Service Service States Service Se</i>	4.1	23
91	Effect of the support on the kinetic and deactivation performance of Pt/support catalysts during coupled hydrogenation and ring-opening of pyrolysis gasoline. <i>Applied Catalysis A: General</i> , 2007 , 333, 161-171	5.1	23
90	MTG fluidized bed reactorEegenerator unit with catalyst circulation: process simulation and operation of an experimental setup. <i>Chemical Engineering Science</i> , 2000 , 55, 3223-3235	4.4	23
89	OPTIMIZATION OF THE OPERATION IN A REACTOR WITH CONTINUOUS CATALYST CIRCULATION IN THE GASEOUS BENZYL ALCOHOL POLYMERIZATION. <i>Chemical Engineering Communications</i> , 1989 , 75, 121-134	2.2	23
88	Petcoke-derived functionalized activated carbon as support in a bifunctional catalyst for tire oil hydroprocessing. <i>Fuel Processing Technology</i> , 2016 , 144, 239-247	7.2	22
87	Deactivation and acidity deterioration of a silica/alumina catalyst in the isomerization of cis-butene. <i>Industrial & Engineering Chemistry Research</i> , 1993 , 32, 588-593	3.9	22

(2007-1985)

86	Coke deposition on silica-alumina catalysts in dehydration reactions. <i>Industrial & Engineering Chemistry Product Research and Development</i> , 1985 , 24, 531-539		22	
85	Kinetic Modeling of the Hydrotreating and Hydrocracking Stages for Upgrading Scrap Tires Pyrolysis Oil (STPO) toward High-Quality Fuels. <i>Energy & Discounty Fuels</i> , 2015 , 29, 7542-7553	4.1	21	
84	Kinetic Modeling for Assessing the Product Distribution in Toluene Hydrocracking on a Pt/HZSM-5 Catalyst. <i>Industrial & Engineering Chemistry Research</i> , 2008 , 47, 1043-1050	3.9	21	
83	Kinetic modelling of methylcyclohexane ring-opening over a HZSM-5 zeolite catalyst. <i>Chemical Engineering Journal</i> , 2008 , 140, 287-295	14.7	21	
82	Effect of Pressure on the Hydrocracking of Light Cycle Oil with a PtBd/HY Catalyst. <i>Energy & Energy &</i>	4.1	20	
81	Study of the preparation and composition of the metallic function for the selective hydrogenation of CO2 to gasoline over bifunctional catalysts. <i>Journal of Chemical Technology and Biotechnology</i> , 2003 , 78, 161-166	3.5	20	
80	Catalytic deactivation pathways during the cracking of glycerol and glycerol/VGO blends under FCC unit conditions. <i>Chemical Engineering Journal</i> , 2017 , 307, 955-965	14.7	19	
79	Effect of Temperature in Hydrocracking of Light Cycle Oil on a Noble Metal-Supported Catalyst for Fuel Production. <i>Chemical Engineering and Technology</i> , 2012 , 35, 653-660	2	19	
78	Valorization of Polyolefins Dissolved in Light Cycle Oil over HY Zeolites under Fluid Catalytic Cracking Unit Conditions. <i>Industrial & Engineering Chemistry Research</i> , 2003 , 42, 3952-3961	3.9	19	
77	Isomerization of butenes as a test reaction for measurement of solid catalyst acidity. <i>Industrial & Engineering Chemistry Research</i> , 1990 , 29, 1172-1178	3.9	19	
76	Assessment of thermogravimetric methods for calculating coke combustion-regeneration kinetics of deactivated catalyst. <i>Chemical Engineering Science</i> , 2017 , 171, 459-470	4.4	18	
75	Production of Non-Conventional Fuels by Catalytic Cracking of Scrap Tires Pyrolysis Oil. <i>Industrial & Engineering Chemistry Research</i> , 2019 , 58, 5158-5167	3.9	18	
74	Hydrodeoxygenation of raw bio-oil towards platform chemicals over FeMoP/zeolite catalysts. <i>Journal of Industrial and Engineering Chemistry</i> , 2019 , 80, 392-400	6.3	18	
73	Recycling Hydrocarbon Cuts into FCC Units. Energy & Energy & 2002, 16, 615-621	4.1	18	
72	Study of temperature-programmed desorption of tert-butylamine to measure the surface acidity of solid catalysts. <i>Industrial & Engineering Chemistry Research</i> , 1990 , 29, 1621-1626	3.9	18	
71	Coke deposition and product distribution in the co-cracking of waste polyolefin derived streams and vacuum gas oil under FCC unit conditions. <i>Fuel Processing Technology</i> , 2019 , 192, 130-139	7.2	17	
70	Towards waste refinery: Co-feeding HDPE pyrolysis waxes with VGO into the catalytic cracking unit. <i>Energy Conversion and Management</i> , 2020 , 207, 112554	10.6	17	
69	Kinetic Model Discrimination for Toluene Hydrogenation over Noble-Metal-Supported Catalysts. <i>Industrial & Engineering Chemistry Research</i> , 2007 , 46, 7417-7425	3.9	17	

68	Direct Synthesis of Dimethyl Ether From (H2+CO) and (H2+CO2) Feeds. Effect of Feed Composition. <i>International Journal of Chemical Reactor Engineering</i> , 2005 , 3,	1.2	17
67	Hydrodynamics of nearly flat base spouted beds. <i>The Chemical Engineering Journal and the Biochemical Engineering Journal</i> , 1994 , 55, 27-37		17
66	Kinetic equation for the regeneration of a solid catalyst by coke-burning. <i>Chemical Engineering Science</i> , 1983 , 38, 1356-1360	4.4	17
65	Enhancement of aromatic hydro-upgrading on a Pt catalyst by promotion with Pd and shape-selective supports. <i>Fuel Processing Technology</i> , 2012 , 101, 64-72	7.2	16
64	Co-feeding water to attenuate deactivation of the catalyst metallic function (CuOInOIAl2O3) by coke in the direct synthesis of dimethyl ether. <i>Applied Catalysis B: Environmental</i> , 2011 , 106, 167-167	21.8	16
63	Scrap tires pyrolysis oil as a co-feeding stream on the catalytic cracking of vacuum gasoil under fluid catalytic cracking conditions. <i>Waste Management</i> , 2020 , 105, 18-26	8.6	15
62	Upgrading of high-density polyethylene and light cycle oil mixtures to fuels via hydroprocessing. <i>Catalysis Today</i> , 2018 , 305, 212-219	5.3	15
61	Conversion of syngas to liquid hydrocarbons over a two-component (Cr2O3@nO and ZSM-5 zeolite) catalyst:. <i>Chemical Engineering Science</i> , 2000 , 55, 1845-1855	4.4	15
60	Assessing the potential of the recycled plastic slow pyrolysis for the production of streams attractive for refineries. <i>Journal of Analytical and Applied Pyrolysis</i> , 2019 , 142, 104668	6	14
59	Cracking of Coker Naphtha with GasDil. Effect of HZSM-5 Zeolite Addition to the Catalyst. <i>Energy & Comp.</i> ; Fuels, 2007 , 21, 11-18	4.1	14
58	Valorization by thermal cracking over silica of polyolefins dissolved in LCO. <i>Fuel Processing Technology</i> , 2004 , 85, 125-140	7.2	14
57	Solute transport characterization in karst aquifers by tracer injection tests for a sustainable water resource management. <i>Journal of Hydrology</i> , 2017 , 547, 269-279	6	13
56	Kinetic Modeling of Hydrotreating for Enhanced Upgrading of Light Cycle Oil. <i>Industrial & Engineering Chemistry Research</i> , 2019 , 58, 13064-13075	3.9	13
55	Screening hydrotreating catalysts for the valorization of a light cycle oil/scrap tires oil blend based on a detailed product analysis. <i>Applied Catalysis B: Environmental</i> , 2019 , 256, 117863	21.8	13
54	The Role of Zeolite Acidity in Coupled Toluene Hydrogenation and Ring Opening in One and Two Steps. <i>Industrial & Description of Chemistry Research</i> , 2008 , 47, 665-671	3.9	13
53	Kinetics of Gaseous Product Formation in the Coke Combustion of a Fluidized Catalytic Cracking Catalyst. <i>Industrial & Engineering Chemistry Research</i> , 1999 , 38, 3255-3260	3.9	13
52	Reaction Degeneration cycles in the isomerization of cis-butene and calculation of the reactivation kinetics of a silical lumina catalyst. <i>Chemical Engineering Science</i> , 1993 , 48, 2741-2752	4.4	13
51	A Data-Driven Reaction Network for the Fluid Catalytic Cracking of Waste Feeds. <i>Processes</i> , 2018 , 6, 24	32.9	13

(2020-2010)

50	Effect of hydrogen on the cracking mechanisms of cycloalkanes over zeolites. <i>Catalysis Today</i> , 2010 , 150, 363-367	5.3	12	
49	MTG Process in a Fixed-Bed Reactor. Operation and Simulation of a Pseudoadiabatic Experimental Unit. <i>Industrial & Engineering Chemistry Research</i> , 2001 , 40, 6087-6098	3.9	12	
48	Dimerization of acetaldehyde to crotonaldehyde over silica-alumina bed operating in reaction-regeneration cycles. <i>Industrial & Engineering Chemistry Process Design and Development</i> , 1985 , 24, 828-831		12	
47	Effect of the FCC Equilibrium Catalyst Properties and of the Cracking Temperature on the Production of Fuel from HDPE Pyrolysis Waxes. <i>Energy & Energy & En</i>	4.1	11	
46	A model for gas flow in jet spouted beds. <i>Canadian Journal of Chemical Engineering</i> , 1993 , 71, 189-194	2.3	11	
45	Application of a solute transport model under variable velocity conditions in a conduit flow aquifer: Olalde karst system, Basque Country, Spain. <i>Environmental Geology</i> , 1997 , 30, 143-151		10	
44	COMPOSITION AND QUALITY OF THE GASOLINE OBTAINED FROM SYNGAS ON Cr2O3-ZnO/ZSM5 CATALYSTS. <i>Chemical Engineering Communications</i> , 1999 , 174, 1-19	2.2	10	
43	Selective kinetic deactivation model for a triangular reaction scheme. <i>Chemical Engineering Science</i> , 1993 , 48, 2273-2282	4.4	10	
42	Co-cracking of high-density polyethylene (HDPE) and vacuum gasoil (VGO) under refinery conditions. <i>Chemical Engineering Journal</i> , 2020 , 382, 122602	14.7	10	
41	Upgrading of heavy coker naphtha by means of catalytic cracking in refinery FCC unit. <i>Fuel Processing Technology</i> , 2020 , 205, 106454	7.2	9	
40	Influence of the Composition of Raw Bio-Oils on Their Valorization in Fluid Catalytic Cracking Conditions. <i>Energy & Discours</i> , 2019, 33, 7458-7465	4.1	9	
39	Valorization of the Blends Polystyrene/Light Cycle Oil and Polystyrene B utadiene/Light Cycle Oil over Different HY Zeolites under FCC Unit Conditions. <i>Energy & Different HY Zeolites</i> 218-227	4.1	9	
38	Optimization of the preparation of a catalyst under deactivation. 1. Control of its kinetic behavior by electing the preparation conditions. <i>Industrial & Engineering Chemistry Research</i> , 1987 , 26, 2403-	2408	9	
37	Modelling product distribution of pyrolysis gasoline hydroprocessing on a PtPd/HZSM-5 catalyst. <i>Chemical Engineering Journal</i> , 2011 , 176-177, 302-311	14.7	8	
36	Gas Flow Dispersion in Jet-Spouted Beds. Effect of Geometric Factors and Operating Conditions. <i>Industrial & Dispersion Chemistry Research</i> , 1994 , 33, 3267-3273	3.9	8	
35	Kinetic study of the regeneration of solid catalysts under internal diffusion restrictions. <i>The Chemical Engineering Journal</i> , 1987 , 35, 115-122		8	
34	Effect of co-feeding HDPE on the product distribution in the hydrocracking of VGO. <i>Catalysis Today</i> , 2020 , 353, 197-203	5.3	8	
33	Lessening coke formation and boosting gasoline yield by incorporating scrap tire pyrolysis oil in the cracking conditions of an FCC unit. <i>Energy Conversion and Management</i> , 2020 , 224, 113327	10.6	7	

32	Catalytic Cracking of Plastic Pyrolysis Waxes with Vacuum Gasoil: Effect of HZSM-5 Zeolite in the FCC Catalyst. <i>International Journal of Chemical Reactor Engineering</i> , 2006 , 4,	1.2	7
31	Valorization of the Blends Polystyrene/Light Cycle Oil and Polystyrene B utadiene/Light Cycle Oil over HZSM-5 Zeolites. <i>Industrial & Engineering Chemistry Research</i> , 2003 , 42, 3700-3710	3.9	7
30	Polymerization of gaseous benzyl alcohol. 2. Kinetic study of the polymerization and of the deactivation for a silica/alumina catalyst. <i>Industrial & Engineering Chemistry Research</i> , 1987 , 26, 19	6 0 -796	55 ⁷
29	Simulation and Optimization of Methanol Transformation into Hydrocarbons in an Isothermal Fixed-Bed Reactor under Reaction Regeneration Cycles. <i>Industrial & Engineering Chemistry Research</i> , 1998 , 37, 2383-2390	3.9	6
28	Optimization of temperature-time sequences in reaction-regeneration cycles. Application to the isomerization of cis-butene. <i>Industrial & Engineering Chemistry Research</i> , 1993 , 32, 2542-2547	3.9	6
27	Polymerization of gaseous benzyl alcohol. 3. Deactivation mechanism of silica/alumina catalyst. <i>Industrial & Engineering Chemistry Research</i> , 1989 , 28, 1752-1756	3.9	6
26	Optimization of the preparation of a catalyst under deactivation. 2. Application to the operation in reaction-regeneration cycles. <i>Industrial & Engineering Chemistry Research</i> , 1989 , 28, 1299-1303	3.9	6
25	Implications of feeding or cofeeding bio-oil in the fluid catalytic cracker (FCC) in terms of regeneration kinetics and energy balance. <i>Energy</i> , 2020 , 209, 118467	7.9	6
24	Characterization of flow and transport dynamics in karst aquifers by analyzing tracer test results in conduits and recharge areas (the Egino Massif, Basque Country, Spain): environmental and management implications. <i>Environmental Earth Sciences</i> , 2018 , 77, 1	2.9	5
23	Simulation of isothermal catalytic fixed-bed reactors operated in successive reaction-regeneration cycles. <i>The Chemical Engineering Journal</i> , 1985 , 31, 137-144		5
22	Converting the Surplus of Low-Quality Naphtha into More Valuable Products by Feeding It to a Fluid Catalytic Cracking Unit. <i>Industrial & Engineering Chemistry Research</i> , 2020 , 59, 16868-16875	3.9	5
21	A Hybrid FCC/HZSM-5 Catalyst for the Catalytic Cracking of a VGO/Bio-Oil Blend in FCC Conditions. <i>Catalysts</i> , 2020 , 10, 1157	4	4
20	Consistency of the ten-lump kinetic model for cracking: Study in a laboratory reactor and use for simulation of an FCCU. <i>Chemical Engineering Communications</i> , 2003 , 190, 254-284	2.2	4
19	A simplified model for gas flow in conical spouted beds. <i>The Chemical Engineering Journal and the Biochemical Engineering Journal</i> , 1995 , 56, 19-26		4
18	Calculation of the kinetics of catalyst regeneration by burning coke following a temperature ramp. <i>The Chemical Engineering Journal and the Biochemical Engineering Journal</i> , 1994 , 54, 35-40		4
17	Temperature vs. time sequences to palliate deactivation in parallel and in series-parallel with the main reaction: parametric study. <i>The Chemical Engineering Journal</i> , 1993 , 51, 167-176		4
16	Upgrading of Bio-oil via Fluid Catalytic Cracking 2020 , 61-96		4
15	Different approaches to convert waste polyolefins into automotive fuels via hydrocracking with a NiW/HY catalyst. <i>Fuel Processing Technology</i> , 2021 , 220, 106891	7.2	4

LIST OF PUBLICATIONS

14	Kinetic modeling for the catalytic cracking of tires pyrolysis oil. Fuel, 2022, 309, 122055	7.1	4
13	Synergy in the Cocracking under FCC Conditions of a Phenolic Compound in the Bio-oil and a Model Compound for Vacuum Gasoil. <i>Industrial & Engineering Chemistry Research</i> , 2020 , 59, 8145-8154	3.9	3
12	Deactivation Kinetic Model in Catalytic PolymerizationsTaking into Account the Initiation Step. <i>Industrial & Engineering Chemistry Research</i> , 1996 , 35, 62-69	3.9	3
11	Taking advantage of the excess of thermal naphthas to enhance the quality of FCC unit products. <i>Journal of Analytical and Applied Pyrolysis</i> , 2020 , 152, 104943	6	3
10	Valorization of Polyolefin/LCO Blend over HZSM-5 Zeolites. <i>International Journal of Chemical Reactor Engineering</i> , 2002 , 1,	1.2	2
9	Detailed nature of tire pyrolysis oil blended with light cycle oil and its hydroprocessed products using a NiW/HY catalyst. <i>Waste Management</i> , 2021 , 128, 36-44	8.6	2
8	Operation strategies for the regeneration section of catalytic cracking units. <i>Studies in Surface Science and Catalysis</i> , 1999 , 126, 281-288	1.8	1
7	Pseudoadiabatic operation for fixed-bed catalytic reactors: methods for finding the limits of the regime. <i>The Chemical Engineering Journal and the Biochemical Engineering Journal</i> , 1995 , 58, 33-44		1
6	Contributions to the calculation of coke deactivation kinetics. A comparison of methods. <i>The Chemical Engineering Journal and the Biochemical Engineering Journal</i> , 1994 , 55, 125-134		1
5	Mechanism and Analysis of Deactivation Data in Heterogeneous Polymerizations. <i>Studies in Surface Science and Catalysis</i> , 1991 , 413-416	1.8	1
4	Product composition and coke deposition in the hydrocracking of polystyrene blended with vacuum gasoil. <i>Fuel Processing Technology</i> , 2021 , 224, 107010	7.2	1
3	Cracking of plastic pyrolysis oil over FCC equilibrium catalysts to produce fuels: Kinetic modeling.	7.1	О
	Fuel, 2022 , 316, 123341	, 	
2	Hydrogen Pressure as a Key Parameter to Control the Quality of the Naphtha Produced in the Hydrocracking of an HDPE/VGO Blend. <i>Catalysts</i> , 2022 , 12, 543	4	0