José MarÃ-a Arandes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5097883/publications.pdf

Version: 2024-02-01

		94433	138484
141	4,551	37	58
papers	citations	h-index	g-index
140	140	1.40	2701
143	143	143	2781
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Kinetic modeling for the catalytic cracking of tires pyrolysis oil. Fuel, 2022, 309, 122055.	6.4	16
2	Oil Production by Pyrolysis of Real Plastic Waste. Polymers, 2022, 14, 553.	4.5	12
3	Cracking of plastic pyrolysis oil over FCC equilibrium catalysts to produce fuels: Kinetic modeling. Fuel, 2022, 316, 123341.	6.4	24
4	Hydrogen Pressure as a Key Parameter to Control the Quality of the Naphtha Produced in the Hydrocracking of an HDPE/VGO Blend. Catalysts, 2022, 12, 543.	3.5	4
5	Fuel production via catalytic cracking of pre-hydrotreated heavy-fuel oil generated by marine-transport operations. Fuel, 2022, 325, 124765.	6.4	5
6	Limitations in the energy balance when VGO/aqueous bio-oil mixtures are co-processed in FCC units. Fuel, 2022, 324, 124798.	6.4	2
7	Waste Refinery: The Valorization of Waste Plastics and End-of-Life Tires in Refinery Units. A Review. Energy & Fuels, 2021, 35, 3529-3557.	5.1	116
8	Detailed nature of tire pyrolysis oil blended with light cycle oil and its hydroprocessed products using a NiW/HY catalyst. Waste Management, 2021, 128, 36-44.	7.4	15
9	Different approaches to convert waste polyolefins into automotive fuels via hydrocracking with a NiW/HY catalyst. Fuel Processing Technology, 2021, 220, 106891.	7.2	16
10	Product composition and coke deposition in the hydrocracking of polystyrene blended with vacuum gasoil. Fuel Processing Technology, 2021, 224, 107010.	7.2	11
11	Effect of co-feeding HDPE on the product distribution in the hydrocracking of VGO. Catalysis Today, 2020, 353, 197-203.	4.4	21
12	Co-cracking of high-density polyethylene (HDPE) and vacuum gasoil (VGO) under refinery conditions. Chemical Engineering Journal, 2020, 382, 122602.	12.7	20
13	Taking advantage of the excess of thermal naphthas to enhance the quality of FCC unit products. Journal of Analytical and Applied Pyrolysis, 2020, 152, 104943.	5.5	8
14	Implications of feeding or cofeeding bio-oil in the fluid catalytic cracker (FCC) in terms of regeneration kinetics and energy balance. Energy, 2020, 209, 118467.	8.8	9
15	Converting the Surplus of Low-Quality Naphtha into More Valuable Products by Feeding It to a Fluid Catalytic Cracking Unit. Industrial & Engineering Chemistry Research, 2020, 59, 16868-16875.	3.7	13
16	A Hybrid FCC/HZSM-5 Catalyst for the Catalytic Cracking of a VGO/Bio-Oil Blend in FCC Conditions. Catalysts, 2020, 10, 1157.	3.5	13
17	Lessening coke formation and boosting gasoline yield by incorporating scrap tire pyrolysis oil in the cracking conditions of an FCC unit. Energy Conversion and Management, 2020, 224, 113327.	9.2	13
18	Synergy in the Cocracking under FCC Conditions of a Phenolic Compound in the Bio-oil and a Model Compound for Vacuum Gasoil. Industrial & Engineering Chemistry Research, 2020, 59, 8145-8154.	3.7	6

JOSé MARÃA ARANDES

#	Article	IF	CITATIONS
19	Towards waste refinery: Co-feeding HDPE pyrolysis waxes with VGO into the catalytic cracking unit. Energy Conversion and Management, 2020, 207, 112554.	9.2	31
20	Scrap tires pyrolysis oil as a co-feeding stream on the catalytic cracking of vacuum gasoil under fluid catalytic cracking conditions. Waste Management, 2020, 105, 18-26.	7.4	23
21	Upgrading of heavy coker naphtha by means of catalytic cracking in refinery FCC unit. Fuel Processing Technology, 2020, 205, 106454.	7.2	22
22	Hydrodeoxygenation of raw bio-oil towards platform chemicals over FeMoP/zeolite catalysts. Journal of Industrial and Engineering Chemistry, 2019, 80, 392-400.	5.8	30
23	Assessing the potential of the recycled plastic slow pyrolysis for the production of streams attractive for refineries. Journal of Analytical and Applied Pyrolysis, 2019, 142, 104668.	5.5	29
24	Influence of the Composition of Raw Bio-Oils on Their Valorization in Fluid Catalytic Cracking Conditions. Energy & Fuels, 2019, 33, 7458-7465.	5.1	21
25	Kinetic Modeling of Hydrotreating for Enhanced Upgrading of Light Cycle Oil. Industrial & Engineering Chemistry Research, 2019, 58, 13064-13075.	3.7	21
26	Catalytic cracking of raw bio-oil under FCC unit conditions over different zeolite-based catalysts. Journal of Industrial and Engineering Chemistry, 2019, 78, 372-382.	5.8	64
27	Fuel production by cracking of polyolefins pyrolysis waxes under fluid catalytic cracking (FCC) operating conditions. Waste Management, 2019, 93, 162-172.	7.4	52
28	Screening hydrotreating catalysts for the valorization of a light cycle oil/scrap tires oil blend based on a detailed product analysis. Applied Catalysis B: Environmental, 2019, 256, 117863.	20.2	20
29	Effect of the FCC Equilibrium Catalyst Properties and of the Cracking Temperature on the Production of Fuel from HDPE Pyrolysis Waxes. Energy & Fuels, 2019, 33, 5191-5199.	5.1	25
30	Coke deposition and product distribution in the co-cracking of waste polyolefin derived streams and vacuum gas oil under FCC unit conditions. Fuel Processing Technology, 2019, 192, 130-139.	7.2	32
31	Cracking of Scrap Tires Pyrolysis Oil in a Fluidized Bed Reactor under Catalytic Cracking Unit Conditions. Effects of Operating Conditions. Energy & Fuels, 2019, 33, 3133-3143.	5.1	27
32	Production of Non-Conventional Fuels by Catalytic Cracking of Scrap Tires Pyrolysis Oil. Industrial & Engineering Chemistry Research, 2019, 58, 5158-5167.	3.7	28
33	Characterization of flow and transport dynamics in karst aquifers by analyzing tracer test results in conduits and recharge areas (the Egino Massif, Basque Country, Spain): environmental and management implications. Environmental Earth Sciences, 2018, 77, 1.	2.7	5
34	Upgrading of high-density polyethylene and light cycle oil mixtures to fuels via hydroprocessing. Catalysis Today, 2018, 305, 212-219.	4.4	26
35	Catalyst used in fluid catalytic cracking (FCC) unit as a support of NiMoP catalyst for light cycle oil hydroprocessing. Fuel, 2018, 216, 142-152.	6.4	38
36	Revealing the pathways of catalyst deactivation by coke during the hydrodeoxygenation of raw bio-oil. Applied Catalysis B: Environmental, 2018, 239, 513-524.	20.2	87

#	Article	IF	CITATIONS
37	A Data-Driven Reaction Network for the Fluid Catalytic Cracking of Waste Feeds. Processes, 2018, 6, 243.	2.8	14
38	Solute transport characterization in karst aquifers by tracer injection tests for a sustainable water resource management. Journal of Hydrology, 2017, 547, 269-279.	5.4	20
39	Assessment of thermogravimetric methods for calculating coke combustion-regeneration kinetics of deactivated catalyst. Chemical Engineering Science, 2017, 171, 459-470.	3.8	28
40	Stability of an acid activated carbon based bifunctional catalyst for the raw bio-oil hydrodeoxygenation. Applied Catalysis B: Environmental, 2017, 203, 389-399.	20.2	114
41	Catalytic deactivation pathways during the cracking of glycerol and glycerol/VGO blends under FCC unit conditions. Chemical Engineering Journal, 2017, 307, 955-965.	12.7	26
42	Petcoke-derived functionalized activated carbon as support in a bifunctional catalyst for tire oil hydroprocessing. Fuel Processing Technology, 2016, 144, 239-247.	7.2	25
43	Synergy in the Cracking of a Blend of Bio-oil and Vacuum Gasoil under Fluid Catalytic Cracking Conditions. Industrial & Engineering Chemistry Research, 2016, 55, 1872-1880.	3.7	68
44	Phosphorus-containing activated carbon as acid support in a bifunctional Pt–Pd catalyst for tire oil hydrocracking. Catalysis Communications, 2016, 78, 48-51.	3.3	39
45	Opportunities and barriers for producing high quality fuels from the pyrolysis of scrap tires. Renewable and Sustainable Energy Reviews, 2016, 56, 745-759.	16.4	197
46	Dual coke deactivation pathways during the catalytic cracking of raw bio-oil and vacuum gasoil in FCC conditions. Applied Catalysis B: Environmental, 2016, 182, 336-346.	20.2	133
47	Upgrading model compounds and Scrap Tires Pyrolysis Oil (STPO) on hydrotreating NiMo catalysts with tailored supports. Fuel, 2015, 145, 158-169.	6.4	64
48	Prospects for Obtaining High Quality Fuels from the Hydrocracking of a Hydrotreated Scrap Tires Pyrolysis Oil. Energy & Fuels, 2015, 29, 5458-5466.	5.1	44
49	Kinetic Modeling of the Hydrotreating and Hydrocracking Stages for Upgrading Scrap Tires Pyrolysis Oil (STPO) toward High-Quality Fuels. Energy & Fuels, 2015, 29, 7542-7553.	5.1	27
50	Effect of Pressure on the Hydrocracking of Light Cycle Oil with a Pt–Pd/HY Catalyst. Energy & Fuels, 2012, 26, 5897-5904.	5.1	27
51	Deactivating Species Deposited on Pt–Pd Catalysts in the Hydrocracking of Light-Cycle Oil. Energy & Fuels, 2012, 26, 1509-1519.	5.1	63
52	Designing supported ZnNi catalysts for the removal of oxygen from bio-liquids and aromatics from diesel. Green Chemistry, 2012, 14, 2759.	9.0	33
53	Effect of Temperature in Hydrocracking of Light Cycle Oil on a Noble Metalâ€6upported Catalyst for Fuel Production. Chemical Engineering and Technology, 2012, 35, 653-660.	1.5	23
54	Preliminary studies on fuel production through LCO hydrocracking on noble-metal supported catalysts. Fuel, 2012, 94, 504-515.	6.4	56

JOSé MARÃA ARANDES

#	Article	IF	CITATIONS
55	Effect of space velocity on the hydrocracking of Light Cycle Oil over a Pt–Pd/HY zeolite catalyst. Fuel Processing Technology, 2012, 95, 8-15.	7.2	42
56	Enhancement of aromatic hydro-upgrading on a Pt catalyst by promotion with Pd and shape-selective supports. Fuel Processing Technology, 2012, 101, 64-72.	7.2	20
57	Role of Acidity in the Deactivation and Steady Hydroconversion of Light Cycle Oil on Noble Metal Supported Catalysts. Energy & Fuels, 2011, 25, 3389-3399.	5.1	51
58	Modelling product distribution of pyrolysis gasoline hydroprocessing on a Pt–Pd/HZSM-5 catalyst. Chemical Engineering Journal, 2011, 176-177, 302-311.	12.7	11
59	Co-feeding water to attenuate deactivation of the catalyst metallic function (CuO–ZnO–Al2O3) by coke in the direct synthesis of dimethyl ether. Applied Catalysis B: Environmental, 2011, 106, 167-167.	20.2	18
60	Regeneration of CuO-ZnO-Al2O3/γ-Al2O3 catalyst in the direct synthesis of dimethyl ether. Applied Catalysis B: Environmental, 2010, 94, 108-116.	20.2	60
61	Effect of hydrogen on the cracking mechanisms of cycloalkanes over zeolites. Catalysis Today, 2010, 150, 363-367.	4.4	16
62	Effect of the support acidity on the aromatic ring-opening of pyrolysis gasoline over Pt/HZSM-5 catalysts. Catalysis Today, 2009, 143, 115-119.	4.4	36
63	HZSM-5 Zeolite As Catalyst Additive for Residue Cracking under FCC Conditions. Energy & Fuels, 2009, 23, 4215-4223.	5.1	32
64	Effect of catalyst properties on the cracking of polypropylene pyrolysis waxes under FCC conditions. Catalysis Today, 2008, 133-135, 413-419.	4.4	39
65	Kinetic modelling of methylcyclohexane ring-opening over a HZSM-5 zeolite catalyst. Chemical Engineering Journal, 2008, 140, 287-295.	12.7	23
66	Kinetic Modeling for Assessing the Product Distribution in Toluene Hydrocracking on a Pt/HZSM-5 Catalyst. Industrial & Engineering Chemistry Research, 2008, 47, 1043-1050.	3.7	23
67	Effect of Atmospheric Residue Incorporation in the Fluidized Catalytic Cracking (FCC) Feed on Product Stream Yields and Composition. Energy & Fuels, 2008, 22, 2149-2156.	5.1	31
68	The Role of Zeolite Acidity in Coupled Toluene Hydrogenation and Ring Opening in One and Two Steps. Industrial & Engineering Chemistry Research, 2008, 47, 665-671.	3.7	16
69	Kinetic Modeling of Dimethyl Ether Synthesis in a Single Step on a CuOâ^'ZnOâ^'Al ₂ 0 ₃ /γ-Al ₂ O ₃ Catalyst. Industrial & Engineering Chemistry Research, 2007, 46, 5522-5530.	3.7	162
70	Catalytic Cracking of Waxes Produced by the Fast Pyrolysis of Polyolefins. Energy & Fuels, 2007, 21, 561-569.	5.1	49
71	Cracking of Coker Naphtha with Gasâ^'Oil. Effect of HZSM-5 Zeolite Addition to the Catalyst. Energy & Fuels, 2007, 21, 11-18.	5.1	16
72	Kinetic Model Discrimination for Toluene Hydrogenation over Noble-Metal-Supported Catalysts. Industrial & Engineering Chemistry Research, 2007, 46, 7417-7425.	3.7	20

#	Article	IF	CITATIONS
73	Effect of the support on the kinetic and deactivation performance of Pt/support catalysts during coupled hydrogenation and ring-opening of pyrolysis gasoline. Applied Catalysis A: General, 2007, 333, 161-171.	4.3	27
74	Factors influencing the thioresistance of nickel catalysts in aromatics hydrogenation. Applied Catalysis A: General, 2007, 317, 20-33.	4.3	32
75	Enhancement of pyrolysis gasoline hydrogenation over Pd-promoted Ni/SiO2–Al2O3 catalysts. Fuel, 2007, 86, 2262-2274.	6.4	64
76	Effect of HZSM-5 catalyst addition on the cracking of polyolefin pyrolysis waxes under FCC conditions. Chemical Engineering Journal, 2007, 132, 17-26.	12.7	32
77	Aromatics reduction of pyrolysis gasoline (PyGas) over HY-supported transition metal catalysts. Applied Catalysis A: General, 2006, 315, 101-113.	4.3	41
78	Catalytic Cracking of Plastic Pyrolysis Waxes with Vacuum Gasoil: Effect of HZSM-5 Zeolite in the FCC Catalyst. International Journal of Chemical Reactor Engineering, 2006, 4, .	1.1	8
79	Effect of operating conditions on the synthesis of dimethyl ether over a CuO-ZnO-Al2O3/NaHZSM-5 bifunctional catalyst. Catalysis Today, 2005, 107-108, 467-473.	4.4	141
80	Direct Synthesis of Dimethyl Ether From (H2+CO) and (H2+CO2) Feeds. Effect of Feed Composition. International Journal of Chemical Reactor Engineering, 2005, 3, .	1.1	21
81	Valorization by thermal cracking over silica of polyolefins dissolved in LCO. Fuel Processing Technology, 2004, 85, 125-140.	7.2	19
82	Valorization of the Blends Polystyrene/Light Cycle Oil and Polystyreneâ^'Butadiene/Light Cycle Oil over Different HY Zeolites under FCC Unit Conditions. Energy & Fuels, 2004, 18, 218-227.	5.1	9
83	Study of the preparation and composition of the metallic function for the selective hydrogenation of CO2to gasoline over bifunctional catalysts. Journal of Chemical Technology and Biotechnology, 2003, 78, 161-166.	3.2	23
84	Thermal recycling of polystyrene and polystyrene-butadiene dissolved in a light cycle oil. Journal of Analytical and Applied Pyrolysis, 2003, 70, 747-760.	5.5	47
85	Valorization of the Blends Polystyrene/Light Cycle Oil and Polystyreneâ^Butadiene/Light Cycle Oil over HZSM-5 Zeolites. Industrial & Engineering Chemistry Research, 2003, 42, 3700-3710.	3.7	9
86	Valorization of Polyolefins Dissolved in Light Cycle Oil over HY Zeolites under Fluid Catalytic Cracking Unit Conditions. Industrial & Engineering Chemistry Research, 2003, 42, 3952-3961.	3.7	22
87	Consistency of the ten-lump kinetic model for cracking: Study in a laboratory reactor and use for simulation of an FCCU. Chemical Engineering Communications, 2003, 190, 254-284.	2.6	5
88	Valorization of Polyolefin/LCO Blend over HZSM-5 Zeolites. International Journal of Chemical Reactor Engineering, 2002, 1, .	1.1	4
89	Recycling Hydrocarbon Cuts into FCC Units. Energy & Fuels, 2002, 16, 615-621.	5.1	20
90	MTG Process in a Fixed-Bed Reactor. Operation and Simulation of a Pseudoadiabatic Experimental Unit. Industrial & Engineering Chemistry Research, 2001, 40, 6087-6098.	3.7	13

José MarÃa Arandes

#	Article	IF	CITATIONS
91	Contribution to the Design of an Adiabatic Fixed Bed Reactor for the MTG Process under Reaction-regeneration Cycles. Studies in Surface Science and Catalysis, 2001, 139, 319-326.	1.5	0
92	Modelling FCC units under steady and unsteady state conditions. Canadian Journal of Chemical Engineering, 2000, 78, 111-123.	1.7	39
93	Conversion of syngas to liquid hydrocarbons over a two-component (Cr2O3–ZnO and ZSM-5 zeolite) catalyst:. Chemical Engineering Science, 2000, 55, 1845-1855.	3.8	17
94	MTG fluidized bed reactor–regenerator unit with catalyst circulation: process simulation and operation of an experimental setup. Chemical Engineering Science, 2000, 55, 3223-3235.	3.8	25
95	Effect of HZSM-5 Zeolite Addition to a Fluid Catalytic Cracking Catalyst. Study in a Laboratory Reactor Operating under Industrial Conditions. Industrial & Engineering Chemistry Research, 2000, 39, 1917-1924.	3.7	63
96	COMPOSITION AND QUALITY OF THE GASOLINE OBTAINED FROM SYNGAS ON Cr2O3-ZnO/ZSM5 CATALYSTS. Chemical Engineering Communications, 1999, 174, 1-19.	2.6	10
97	Operation strategies for the regeneration section of catalytic cracking units. Studies in Surface Science and Catalysis, 1999, 126, 281-288.	1.5	1
98	Kinetics of Gaseous Product Formation in the Coke Combustion of a Fluidized Catalytic Cracking Catalyst. Industrial & Engineering Chemistry Research, 1999, 38, 3255-3260.	3.7	13
99	Effect of the operating conditions on the conversion of syngas into liquid hydrocarbons over a Cr2O3-ZnO/ZSM5 bifunctional catalyst. Journal of Chemical Technology and Biotechnology, 1998, 72, 190-196.	3.2	24
100	Study of Physical Mixtures of Cr2O3â^'ZnO and ZSM-5 Catalysts for the Transformation of Syngas into Liquid Hydrocarbons. Industrial & Engineering Chemistry Research, 1998, 37, 1211-1219.	3.7	49
101	Simulation and Optimization of Methanol Transformation into Hydrocarbons in an Isothermal Fixed-Bed Reactor under Reactionâ [~] Regeneration Cycles. Industrial & Engineering Chemistry Research, 1998, 37, 2383-2390.	3.7	8
102	Recycled Plastics in FCC Feedstocks:  Specific Contributions. Industrial & Engineering Chemistry Research, 1997, 36, 4530-4534.	3.7	41
103	Design and Operation of a Catalytic Polymerization Reactor in a Dilute Spouted Bed Regime. Industrial & & & & & & & & & & & & & & & & & & &	3.7	58
104	Transformation of Several Plastic Wastes into Fuels by Catalytic Cracking. Industrial & Engineering Chemistry Research, 1997, 36, 4523-4529.	3.7	100
105	Application of a solute transport model under variable velocity conditions in a conduit flow aquifer: Olalde karst system, Basque Country, Spain. Environmental Geology, 1997, 30, 143-151.	1.2	10
106	Deactivation Kinetic Model in Catalytic PolymerizationsTaking into Account the Initiation Step. Industrial & Engineering Chemistry Research, 1996, 35, 62-69.	3.7	3
107	Correlation for calculation of the gas dispersion coefficient in conical spouted beds. Chemical Engineering Science, 1995, 50, 2161-2172.	3.8	60
108	A simplified model for gas flow in conical spouted beds. The Chemical Engineering Journal and the Biochemical Engineering Journal, 1995, 56, 19-26.	0.1	6

#	Article	IF	CITATIONS
109	Pseudoadiabatic operation for fixed-bed catalytic reactors: methods for finding the limits of the regime. The Chemical Engineering Journal and the Biochemical Engineering Journal, 1995, 58, 33-44.	0.1	1
110	Isotherms of chemical adsorption of bases on solid catalysts for acidity measurement. Journal of Chemical Technology and Biotechnology, 1994, 60, 141-146.	3.2	48
111	Calculation of the kinetics of catalyst regeneration by burning coke following a temperature ramp. The Chemical Engineering Journal and the Biochemical Engineering Journal, 1994, 54, 35-40.	0.1	5
112	Contributions to the calculation of coke deactivation kinetics. A comparison of methods. The Chemical Engineering Journal and the Biochemical Engineering Journal, 1994, 55, 125-134.	0.1	1
113	Hydrodynamics of nearly flat base spouted beds. The Chemical Engineering Journal and the Biochemical Engineering Journal, 1994, 55, 27-37.	0.1	18
114	Gas Flow Dispersion in Jet-Spouted Beds. Effect of Geometric Factors and Operating Conditions. Industrial & Engineering Chemistry Research, 1994, 33, 3267-3273.	3.7	9
115	Expansion of spouted beds in conical contactors. The Chemical Engineering Journal, 1993, 51, 45-52.	0.3	50
116	Pressure drop in conical spouted beds. The Chemical Engineering Journal, 1993, 51, 53-60.	0.3	80
117	Temperature vs. time sequences to palliate deactivation in parallel and in series-parallel with the main reaction: parametric study. The Chemical Engineering Journal, 1993, 51, 167-176.	0.3	6
118	A model for gas flow in jet spouted beds. Canadian Journal of Chemical Engineering, 1993, 71, 189-194.	1.7	13
119	Reaction—regeneration cycles in the isomerization of cis-butene and calculation of the reactivation kinetics of a silica—alumina catalyst. Chemical Engineering Science, 1993, 48, 2741-2752.	3.8	14
120	Selective kinetic deactivation model for a triangular reaction scheme. Chemical Engineering Science, 1993, 48, 2273-2282.	3.8	10
121	Calculation of the kinetics of deactivation by coke in an integral reactor for a triangular scheme reaction. Chemical Engineering Science, 1993, 48, 1077-1087.	3.8	36
122	Calculation of the kinetics of deactivation by coke of a silica-alumina catalyst in the dehydration of 2-ethylhexanol. Industrial & Engineering Chemistry Research, 1993, 32, 458-465.	3.7	28
123	Design factors of conical spouted beds and jet spouted beds. Industrial & Engineering Chemistry Research, 1993, 32, 1245-1250.	3.7	82
124	Deactivation and acidity deterioration of a silica/alumina catalyst in the isomerization of cis-butene. Industrial & Engineering Chemistry Research, 1993, 32, 588-593.	3.7	23
125	Optimization of temperature-time sequences in reaction-regeneration cycles. Application to the isomerization of cis-butene. Industrial & amp; Engineering Chemistry Research, 1993, 32, 2542-2547.	3.7	10
126	Stable operation conditions for gas-solid contact regimes in conical spouted beds. Industrial & Engineering Chemistry Research, 1992, 31, 1784-1792.	3.7	223

#	Article	IF	CITATIONS
127	Simulation and multiplicity of steady states in fluidized FCCUs. Chemical Engineering Science, 1992, 47, 2535-2540.	3.8	38
128	Mechanism and Analysis of Deactivation Data in Heterogeneous Polymerizations. Studies in Surface Science and Catalysis, 1991, , 413-416.	1.5	1
129	Isomerization of butenes as a test reaction for measurement of solid catalyst acidity. Industrial & Engineering Chemistry Research, 1990, 29, 1172-1178.	3.7	20
130	Study of temperature-programmed desorption of tert-butylamine to measure the surface acidity of solid catalysts. Industrial & Engineering Chemistry Research, 1990, 29, 1621-1626.	3.7	18
131	Polymerization of gaseous benzyl alcohol. 3. Deactivation mechanism of silica/alumina catalyst. Industrial & Engineering Chemistry Research, 1989, 28, 1752-1756.	3.7	6
132	Optimization of the preparation of a catalyst under deactivation. 2. Application to the operation in reaction-regeneration cycles. Industrial & amp; Engineering Chemistry Research, 1989, 28, 1299-1303.	3.7	7
133	OPTIMIZATION OF THE OPERATION IN A REACTOR WITH CONTINUOUS CATALYST CIRCULATION IN THE GASEOUS BENZYL ALCOHOL POLYMERIZATION. Chemical Engineering Communications, 1989, 75, 121-134.	2.6	23
134	Design and operation of a jet spouted bed reactor with continuous catalyst feed in the benzyl alcohol polymerization. Industrial & Engineering Chemistry Research, 1987, 26, 1297-1304.	3.7	55
135	Polymerization of gaseous benzyl alcohol. 2. Kinetic study of the polymerization and of the deactivation for a silica/alumina catalyst. Industrial & Engineering Chemistry Research, 1987, 26, 1960-1965.	3.7	7
136	Optimization of the preparation of a catalyst under deactivation. 1. Control of its kinetic behavior by electing the preparation conditions. Industrial & Engineering Chemistry Research, 1987, 26, 2403-2408.	3.7	10
137	Kinetic study of the regeneration of solid catalysts under internal diffusion restrictions. The Chemical Engineering Journal, 1987, 35, 115-122.	0.3	9
138	Simulation of isothermal catalytic fixed-bed reactors operated in successive reaction-regeneration cycles. The Chemical Engineering Journal, 1985, 31, 137-144.	0.3	6
139	Dimerization of acetaldehyde to crotonaldehyde over silica-alumina bed operating in reaction-regeneration cycles. Industrial & Engineering Chemistry Process Design and Development, 1985, 24, 828-831.	0.6	12
140	Coke deposition on silica-alumina catalysts in dehydration reactions. Industrial & Engineering Chemistry Product Research and Development, 1985, 24, 531-539.	0.5	22
141	Kinetic equation for the regeneration of a solid catalyst by coke-burning. Chemical Engineering Science, 1983, 38, 1356-1360.	3.8	18