Maurizio Fraziano

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5097218/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Multirole of Liposomes in Therapy and Prevention of Infectious Diseases. Frontiers in Immunology, 2018, 9, 155.	2.2	192
2	PE_PGRS30 is required for the full virulence of Mycobacterium tuberculosis. Cellular Microbiology, 2012, 14, 356-367.	1.1	100
3	Sphingosine 1–Phosphate Induces Antimicrobial Activity Both In Vitro and In Vivo. Journal of Infectious Diseases, 2004, 189, 2129-2138.	1.9	83
4	Lack of â€~tissue' transglutaminase protein cross-linking leads to leakage of macromolecules from dying cells: relationship to development of autoimmunity in MRLlpr/lpr mice. Cell Death and Differentiation, 1997, 4, 463-472.	5.0	82
5	Janus-faced liposomes enhance antimicrobial innate immune response in <i>Mycobacterium tuberculosis</i> infection. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E1360-8.	3.3	60
6	Adipocyte metabolism is improved by TNF receptor-targeting small RNAs identified from dried nuts. Communications Biology, 2019, 2, 317.	2.0	59
7	Expression of CCR5 Is Increased in Human Monocyte-Derived Macrophages and Alveolar Macrophages in the Course of in Vivo and in Vitro Mycobacterium tuberculosis Infection. AIDS Research and Human Retroviruses, 1999, 15, 869-874.	0.5	57
8	Induction of Apoptosis and Release of Interleukinâ€1β by Cell Wall–Associated 19â€kDa Lipoprotein during the Course of Mycobacterial Infection. Journal of Infectious Diseases, 2004, 190, 1167-1176.	1.9	54
9	Mycobacterium tuberculosis–Induced Apoptosis in Monocytes/Macrophages: Early Membrane Modifications and Intracellular Mycobacterial Viability. Journal of Infectious Diseases, 2000, 181, 1506-1509.	1.9	53
10	Phosphodiesterase Type 5 Inhibitor Sildenafil Decreases the Proinflammatory Chemokine CXCL10 in Human Cardiomyocytes and in Subjects with Diabetic Cardiomyopathy. Inflammation, 2016, 39, 1238-52.	1.7	46
11	Controlled self assembly of collagen nanoparticle. Journal of Nanoparticle Research, 2011, 13, 6141-6147.	0.8	42
12	Nitric Oxide Inhibits the HIV-1 Reverse Transcriptase Activity. Biochemical and Biophysical Research Communications, 1999, 258, 624-627.	1.0	41
13	Proinflammatory Cytokines in the Course ofMycobacteriumtuberculosis–Induced Apoptosis in Monocytes/Macrophages. Journal of Infectious Diseases, 2002, 186, 1277-1282.	1.9	38
14	Mycobacterial 19-kDa lipoprotein mediates Mycobacterium tuberculosis-induced apoptosis in monocytes/macrophages at early stages of infection. Cell Death and Differentiation, 2000, 7, 1270-1272.	5.0	37
15	Macrophage Response to Mycobacterium tuberculosis During HIV Infection Relationships Between Macrophage Activation and Apoptosis Current Molecular Medicine, 2001, 1, 209-216.	0.6	33
16	Expansion of CCR5+ CD4+ T-lymphocytes in the course of active pulmonary tuberculosis. European Respiratory Journal, 2004, 24, 638-643.	3.1	33
17	The case of an APDS patient: Defects in maturation and function and decreased in vitro anti-mycobacterial activity in the myeloid compartment. Clinical Immunology, 2017, 178, 20-28.	1.4	31
18	Characterization of vB_Kpn_F48, a Newly Discovered Lytic Bacteriophage for Klebsiella pneumoniae of Sequence Type 101. Viruses, 2018, 10, 482.	1.5	31

#	Article	IF	CITATIONS
19	Natural lysophospholipids reduce Mycobacterium tuberculosis â€induced cytotoxicity and induce antiâ€mycobacterial activity by a phagolysosome maturationâ€dependent mechanism in A549 type II alveolar epithelial cells. Immunology, 2010, 129, 125-132.	2.0	30
20	Redox activation of ATM enhances GSNOR translation to sustain mitophagy and tolerance to oxidative stress. EMBO Reports, 2021, 22, e50500.	2.0	30
21	DormantMycobacterium tuberculosisFails To Block Phagosome Maturation and Shows Unexpected Capacity To Stimulate Specific Human T Lymphocytes. Journal of Immunology, 2013, 191, 274-282.	0.4	28
22	Liposomes loaded with bioactive lipids enhance antibacterial innate immunity irrespective of drug resistance. Scientific Reports, 2017, 7, 45120.	1.6	26
23	First Case of Patient With Two Homozygous Mutations in MYD88 and CARD9 Genes Presenting With Pyogenic Bacterial Infections, Elevated IgE, and Persistent EBV Viremia. Frontiers in Immunology, 2019, 10, 130.	2.2	26
24	Nitric Oxide Inhibits HIV-1 Replication in Human Astrocytoma Cells. Biochemical and Biophysical Research Communications, 1999, 254, 200-202.	1.0	25
25	Role of macrophage phospholipase D in natural and CpG-induced antimycobacterial activity. Cellular Microbiology, 2003, 5, 913-920.	1.1	25
26	The Urgent Need for Novel Antimicrobial Agents and Strategies to Fight Antibiotic Resistance. Antibiotics, 2019, 8, 254.	1.5	23
27	Lysophosphatidic acid enhances antimycobacterial activity both in vitro and ex vivo. Clinical Immunology, 2006, 121, 23-28.	1.4	22
28	A new Mycobacterium tuberculosis smooth colony reduces growth inside human macrophages and represses PDIM Operon gene expression. Does an heterogeneous population exist in intracellular mycobacteria?. Microbial Pathogenesis, 2012, 53, 135-146.	1.3	18
29	Mycobacterium tuberculosis may escape helper T cell recognition by infecting human fibroblasts. Human Immunology, 2013, 74, 722-729.	1.2	18
30	Immunization With Mycobacterium tuberculosis Antigens Encapsulated in Phosphatidylserine Liposomes Improves Protection Afforded by BCG. Frontiers in Immunology, 2019, 10, 1349.	2.2	18
31	Does sphingosine 1-phosphate play a protective role in the course of pulmonary tuberculosis?. Clinical Immunology, 2006, 121, 260-264.	1.4	14
32	B-Pred, a structure based B-cell epitopes prediction server. Advances and Applications in Bioinformatics and Chemistry, 2012, 5, 11.	1.6	14
33	Monosodium Urate Crystals Promote Innate Anti-Mycobacterial Immunity and Improve BCG Efficacy as a Vaccine against Tuberculosis. PLoS ONE, 2015, 10, e0127279.	1.1	14
34	Analysis of the Shotgun Expression Library of the Mycobacterium tuberculosis Genome for Immunodominant Polypeptides: Potential Use in Serodiagnosis. Vaccine Journal, 2003, 10, 1051-1058.	3.2	13
35	In Vitro Analysis of Pyrogenicity and Cytotoxicity Profiles of Flex Sensors to be Used to Sense Human Joint Postures. Sensors, 2014, 14, 11672-11681.	2.1	12
36	Combined Host- and Pathogen-Directed Therapy for the Control of Mycobacterium abscessus Infection. Microbiology Spectrum, 2022, 10, e0254621.	1.2	12

#	Article	IF	CITATIONS
37	Sphingosine 1-phosphate promotes antigen processing and presentation to CD4+ T cells in Mycobacterium tuberculosis-infected monocytes. Biochemical and Biophysical Research Communications, 2007, 361, 687-693.	1.0	11
38	A method permissive to fixation and permeabilization for the multiparametric analysis of apoptotic and necrotic cell phenotype by flow cytometry. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2017, 91, 1115-1124.	1.1	11
39	Liposomes Loaded With Phosphatidylinositol 5-Phosphate Improve the Antimicrobial Response to Pseudomonas aeruginosa in Impaired Macrophages From Cystic Fibrosis Patients and Limit Airway Inflammatory Response. Frontiers in Immunology, 2020, 11, 532225.	2.2	11
40	PMN-MDSC Frequency Discriminates Active Versus Latent Tuberculosis and Could Play a Role in Counteracting the Immune-Mediated Lung Damage in Active Disease. Frontiers in Immunology, 2021, 12, 594376.	2.2	11
41	CpC oligodeoxynucleotides induce Ca2+-dependent phospholipase D activity leading to phagolysosome maturation and intracellular mycobacterial growth inhibition in monocytes. Biochemical and Biophysical Research Communications, 2006, 347, 963-969.	1.0	10
42	Hydroalcoholic extract from Origanum vulgare induces a combined anti-mycobacterial and anti-inflammatory response in innate immune cells. PLoS ONE, 2019, 14, e0213150.	1.1	10
43	Phage Resistance Is Associated with Decreased Virulence in KPC-Producing Klebsiella pneumoniae of the Clonal Group 258 Clade II Lineage. Microorganisms, 2021, 9, 762.	1.6	10
44	Batimastat reduces Mycobacterium tuberculosis-induced apoptosis in macrophages. International Immunopharmacology, 2003, 3, 1657-1665.	1.7	9
45	CpG oligodeoxynucleotides promote phospholipase D dependent phagolysosome maturation and intracellular mycobacterial killing in M. tuberculosis infected type II alveolar epithelial cells. Cellular Immunology, 2009, 259, 1-4.	1.4	6
46	Fighting MDR-Klebsiella pneumoniae Infections by a Combined Host- and Pathogen-Directed Therapeutic Approach. Frontiers in Immunology, 2022, 13, 835417.	2.2	4
47	Lysophosphatidic acid enhances antimycobacterial response during in vivo primary Mycobacterium tuberculosis infection. Cellular Immunology, 2011, 271, 1-4.	1.4	3
48	The RNA binding protein Sam68 controls T helper 1 differentiation and anti-mycobacterial response through modulation of miR-29. Cell Death and Differentiation, 2019, 26, 1169-1180.	5.0	3
49	Phosphatidylserine Liposomes Reduce Inflammatory Response, Mycobacterial Viability, and HIV Replication in Coinfected Human Macrophages. Journal of Infectious Diseases, 2022, 225, 1675-1679.	1.9	3
50	25-Hydroxyvitamin D Plasma Levels in Natural Populations of Pigmented and Partially Pigmented Land Iguanas from Galápagos (Conolophus spp.). BioMed Research International, 2022, 2022, 1-9.	0.9	3
51	The Presence of Antibodies against HIV Peptides in the Sera of Alloimmune Mice and Thalassemic Patients Is Due to a Polyclonal Activation Mechanism. Clinical Immunology and Immunopathology, 1997, 84, 202-207.	2.1	2
52	Editorial: Exploiting Novel Combined Host- and Pathogen-Directed Therapies for Combating Bacterial Multidrug Resistance. Frontiers in Immunology, 2020, 11, 616486.	2.2	2
53	Characterization of vB_StuS_MMDA13, a Newly Discovered Bacteriophage Infecting the Agar-Degrading Species Sphingomonas turrisvirgatae. Viruses, 2020, 12, 894.	1.5	2
54	Application of Bacteriophages for Human Health: An Old Approach against Contemporary "Bad Bugs― Microorganisms, 2022, 10, 485.	1.6	2

#	Article	IF	CITATIONS
55	Phosphatidylcholine Liposomes Down-Modulate CD4 Expression Reducing HIV Entry in Human Type-1 Macrophages. Frontiers in Immunology, 2022, 13, .	2.2	0