Antonino Colanzi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5097192/publications.pdf

Version: 2024-02-01

185998 233125 2,877 47 28 45 citations h-index g-index papers 49 49 49 2359 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Functional Coordination among the Golgi Complex, the Centrosome and the Microtubule Cytoskeleton during the Cell Cycle. Cells, 2022, 11, 354.	1.8	18
2	Golgi Complex: A Signaling Hub in Cancer. Cells, 2022, 11, 1990.	1.8	9
3	Combinatorial Strategies to Target Molecular and Signaling Pathways to Disarm Cancer Stem Cells. Frontiers in Oncology, $2021, 11, 689131$.	1.3	6
4	The Golgi ribbon: mechanisms of maintenance and disassembly during the cell cycle. Biochemical Society Transactions, 2020, 48, 245-256.	1.6	22
5	GRASP65 controls Golgi position and structure during G2/M transition by regulating the stability of microtubules. Traffic, 2019, 20, 785-802.	1.3	16
6	Organelle Inheritance Control of Mitotic Entry and Progression: Implications for Tissue Homeostasis and Disease. Frontiers in Cell and Developmental Biology, 2019, 7, 133.	1.8	14
7	Alterations of Golgi organization in Alzheimer's disease: A cause or a consequence?. Tissue and Cell, 2017, 49, 133-140.	1.0	27
8	Mitotic inheritance of the Golgi complex and its role in cell division. Biology of the Cell, 2017, 109, 364-374.	0.7	42
9	Assays to Study the Fragmentation of the Golgi Complex During the G2–M Transition of the Cell Cycle. Methods in Molecular Biology, 2016, 1496, 173-185.	0.4	5
10	Aurora-A recruitment and centrosomal maturation are regulated by a Golgi-activated pool of Src during G2. Nature Communications, 2016, 7, 11727.	5.8	37
11	Mechanisms and Regulation of the Mitotic Inheritance of the Golgi Complex. Frontiers in Cell and Developmental Biology, 2015, 3, 79.	1.8	35
12	JNK2 controls fragmentation of the Golgi complex and the G2/M transition through phosphorylation of GRASP65. Journal of Cell Science, 2015, 128, 2249-2260.	1.2	50
13	The Neisseria meningitidis ADP-Ribosyltransferase NarE Enters Human Epithelial Cells and Disrupts Epithelial Monolayer Integrity. PLoS ONE, 2015, 10, e0127614.	1.1	4
14	Cep126 is required for pericentriolar satellite localisation to the centrosome and for primary cilium formation. Biology of the Cell, 2014, 106, 254-267.	0.7	13
15	Signaling at the Golgi During Mitosis. Methods in Cell Biology, 2013, 118, 383-400.	0.5	12
16	Molecular mechanism and functional role of brefeldin A-mediated ADP-ribosylation of CtBP1/BARS. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 9794-9799.	3.3	37
17	A 14 - 3 - $3\hat{l}^3$ dimer-based scaffold bridges CtBP1-S/BARS to PI(4)KIII \hat{l}^2 to regulate post-Golgi carrier formation. Nature Cell Biology, 2012, 14, 343-354.	4.6	79
18	Golgi complex fragmentation in G2/M transition: An organelleâ€based cell•ycle checkpoint. IUBMB Life, 2012, 64, 661-670.	1.5	50

#	Article	ΙF	Citations
19	The Golgi apparatus: an organelle with multiple complex functions. Biochemical Journal, 2011, 433, 1-9.	1.7	100
20	The role of Aurora-A kinase in the Golgi-dependent control of mitotic entry. Bioarchitecture, 2011, 1, 61-65.	1.5	11
21	Golgi Partitioning Controls Mitotic Entry through Aurora-A Kinase. Molecular Biology of the Cell, 2010, 21, 3708-3721.	0.9	41
22	The Golgi and the centrosome: building a functional partnership. Journal of Cell Biology, 2010, 188, 621-628.	2.3	129
23	Mitotic inheritance of the Golgi complex. FEBS Letters, 2009, 583, 3857-3862.	1.3	34
24	The closure of Pak1-dependent macropinosomes requires the phosphorylation of CtBP1/BARS. EMBO Journal, 2008, 27, 970-981.	3.5	177
25	The Golgi mitotic checkpoint is controlled by BARS-dependent fission of the Golgi ribbon into separate stacks in G2. EMBO Journal, 2007, 26, 2465-2476.	3.5	111
26	Mitosis controls the Golgi and the Golgi controls mitosis. Current Opinion in Cell Biology, 2007, 19, 386-393.	2.6	95
27	The multiple activities of CtBP/BARS proteins: the Golgi view. Trends in Cell Biology, 2006, 16, 167-173.	3.6	111
28	CtBP3/BARS drives membrane fission in dynamin-independent transport pathways. Nature Cell Biology, 2005, 7, 570-580.	4.6	162
29	Dicumarol, an inhibitor of ADP-ribosylation of CtBP3/BARS, fragments Golgi non-compact tubular zones and inhibits intra-Golgi transport. European Journal of Cell Biology, 2004, 83, 263-279.	1.6	43
30	Mitotic Golgi Partitioning Is Driven by the Membrane-Fissioning Protein CtBP3/BARS. Science, 2004, 305, 93-96.	6.0	120
31	Cell-cycle-specific Golgi fragmentation: how and why?. Current Opinion in Cell Biology, 2003, 15, 462-467.	2.6	106
32	RAF1-activated MEK1 is found on the Golgi apparatus in late prophase and is required for Golgi complex fragmentation in mitosis. Journal of Cell Biology, 2003, 161, 27-32.	2.3	61
33	Protein Kinase D Regulates the Fission of Cell Surface Destined Transport Carriers from the Trans-Golgi Network. Cell, 2001, 104, 409-420.	13.5	343
34	A Specific Activation of the Mitogen-Activated Protein Kinase Kinase 1 (Mek1) Is Required for Golgi Fragmentation during Mitosis. Journal of Cell Biology, 2000, 149, 331-340.	2.3	98
35	Molecular Cloning and Functional Characterization of Brefeldin A-ADP-ribosylated Substrate. Journal of Biological Chemistry, 1999, 274, 17705-17710.	1.6	92
36	CtBP/BARS induces fission of Golgi membranes by acylating lysophosphatidic acid. Nature, 1999, 402, 429-433.	13.7	314

#	Article	IF	CITATIONS
37	Role of brefeldin A-dependent ADP-ribosylation in the control of intracellular membrane transport. Molecular and Cellular Biochemistry, 1999, 193, 43-51.	1.4	5
38	Role of brefeldin A-dependent ADP-ribosylation in the control of intracellular membrane transport. , 1999, , 43-51.		0
39	Characterization of Chemical Inhibitors of Brefeldin A-activated Mono-ADP-ribosylation. Journal of Biological Chemistry, 1997, 272, 14200-14207.	1.6	37
40	Role of NAD+ and ADP-Ribosylation in the Maintenance of the Golgi Structure. Journal of Cell Biology, 1997, 139, 1109-1118.	2.3	50
41	Brefeldin A-Induced ADP-Ribosylation in the Structure and Function of the Golgi Complex. Advances in Experimental Medicine and Biology, 1997, 419, 331-335.	0.8	8
42	Characterization of the Endogenous Mono-ADP-Ribosylation Stimulated by Brefeldin A. Advances in Experimental Medicine and Biology, 1997, 419, 337-342.	0.8	6
43	Evidence that the 50-kDa substrate of brefeldin A-dependent ADP-ribosylation binds GTP and is modulated by the G-protein beta gamma subunit complex Proceedings of the National Academy of Sciences of the United States of America, 1995, 92, 7065-7069.	3.3	49
44	Stimulation of endogenous ADP-ribosylation by brefeldin A Proceedings of the National Academy of Sciences of the United States of America, 1994, 91, 1114-1118.	3.3	77
45	Determination of bamifylline hydrochloride impurities in bulk material and pharmaceutical forms using liquid chromatography with ultraviolet detection. Journal of Pharmaceutical and Biomedical Analysis, 1990, 8, 1067-1069.	1.4	4
46	Determination of 2-aminopyridine in piroxicam by derivative UV-spectrophotometry. International Journal of Pharmaceutics, 1989, 53, 257-259.	2.6	13
47	Structural Organization and Function of the Golgi Ribbon During Cell Division. Frontiers in Cell and Developmental Biology, 0, 10, .	1.8	4