
Pu00e5l A Olsvik

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5096711/publications.pdf Version: 2024-02-01

PUDDEEL & OLSVIK

#	Article	IF	CITATIONS
1	MIQE précis: Practical implementation of minimum standard guidelines for fluorescence-based quantitative real-time PCR experiments. BMC Molecular Biology, 2010, 11, 74.	3.0	563
2	Evaluation of potential reference genes in real-time RT-PCR studies of Atlantic salmon. BMC Molecular Biology, 2005, 6, 21.	3.0	493
3	The need for transparency and good practices in the qPCR literature. Nature Methods, 2013, 10, 1063-1067.	9.0	251
4	Novel production of Atlantic salmon (Salmo salar) protein based on combined replacement of fish meal and fish oil with plant meal and vegetable oil blends. Aquaculture, 2008, 285, 193-200.	1.7	211
5	mRNA expression of antioxidant enzymes (SOD, CAT and GSH-Px) and lipid peroxidative stress in liver of Atlantic salmon (Salmo salar) exposed to hyperoxic water during smoltification. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2005, 141, 314-323.	1.3	124
6	Antioxidative stress proteins and their gene expression in brown trout (Salmo trutta) from three rivers with different heavy metal levels. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2006, 143, 263-274.	1.3	109
7	Transcriptional responses to temperature and low oxygen stress in Atlantic salmon studied with next-generation sequencing technology. BMC Genomics, 2013, 14, 817.	1.2	97
8	Gene expression of fatty acid-binding proteins, fatty acid transport proteins (cd36 and FATP) and β-oxidation-related genes in Atlantic salmon (<i>Salmo salar</i> L.) fed fish oil or vegetable oil. Aquaculture Nutrition, 2009, 15, 440-451.	1.1	96
9	Effects of short-term starvation on ghrelin, CH-IGF system, and IGF-binding proteins in Atlantic salmon. Fish Physiology and Biochemistry, 2011, 37, 217-232.	0.9	89
10	Toxicological effects of 6PPD and 6PPD quinone in zebrafish larvae. Journal of Hazardous Materials, 2022, 424, 127623.	6.5	86
11	Lysine intake affects gene expression of anabolic hormones in atlantic salmon, Salmo salar. General and Comparative Endocrinology, 2007, 152, 39-46.	0.8	81
12	Induction and activity of oxidative stress-related proteins during waterborne Cd/Zn-exposure in brown trout (Salmo trutta). Chemosphere, 2007, 67, 2241-2249.	4.2	80
13	Selection of reference genes for qRT-PCR examination of wild populations of Atlantic cod Gadus morhua. BMC Research Notes, 2008, 1, 47.	0.6	79
14	Effects of hypo- and hyperoxia on transcription levels of five stress genes and the glutathione system in liver of Atlantic cod Gadus morhua. Journal of Experimental Biology, 2006, 209, 2893-2901.	0.8	77
15	Evaluation of stress- and immune-response biomarkers in Atlantic salmon, Salmo salar L., fed different levels of genetically modified maize (Bt maize), compared with its near-isogenic parental line and a commercial suprex maize. Journal of Fish Diseases, 2007, 30, 201-212.	0.9	64
16	Effects of atrazine on hepatic metabolism and endocrine homeostasis in rainbow trout (Oncorhynchus mykiss). Toxicology and Applied Pharmacology, 2009, 234, 98-106.	1.3	64
17	Effects of the fungicide azoxystrobin on Atlantic salmon (Salmo salar L.) smolt. Ecotoxicology and Environmental Safety, 2010, 73, 1852-1861.	2.9	60
18	Induction and activity of oxidative stress-related proteins during waterborne Cu-exposure in brown trout (Salmo trutta). Chemosphere, 2006, 65, 1707-1714.	4.2	59

#	Article	IF	CITATIONS
19	Increasing the level of selenium in rotifers (Brachionus plicatilis â€~Cayman') enhances the mRNA expression and activity of glutathione peroxidase in cod (Gadus morhua L.) larvae. Aquaculture, 2010, 306, 259-269.	1.7	59
20	Reducing persistent organic pollutants while maintaining long chain omega-3 fatty acid in farmed Atlantic salmon using decontaminated fish oils for an entire production cycle. Chemosphere, 2010, 81, 242-252.	4.2	58
21	Metal accumulation and metallothionein in two populations of brown trout, Salmo trutta, exposed to different natural water environments during a run-off episode. Aquatic Toxicology, 2000, 50, 301-316.	1.9	57
22	Myosin heavy chain mRNA expression correlates higher with muscle protein accretion than growth in Atlantic salmon, Salmo salar. Aquaculture, 2006, 252, 453-461.	1.7	57
23	The inclusion of plant protein in cod diets, its effects on macronutrient digestibility, gut and liver histology and heat shock protein transcription. Aquaculture Research, 2006, 37, 773-784.	0.9	56
24	Hepatic oxidative stress in Atlantic salmon (Salmo salar L.) transferred from a diet based on marine feed ingredients to a diet based on plant ingredients. Aquaculture Nutrition, 2011, 17, e424-e436.	1.1	55
25	Impacts of TCDD and MeHg on DNA methylation in zebrafish (Danio rerio) across two generations. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2014, 165, 17-27.	1.3	55
26	Sensitivity and toxic mode of action of dietary organic and inorganic selenium in Atlantic salmon (Salmo salar). Aquatic Toxicology, 2017, 192, 116-126.	1.9	55
27	Characterization and expression of digestive neutral lipases during ontogeny of Atlantic cod (Gadus) Tj ETQq1 2010, 157, 252-259.	1 0.784314 0.8	rgBT /Overlo 54
28	Global transcriptome analysis of Atlantic cod (Gadus morhua) liver after in vivo methylmercury exposure suggests effects on energy metabolism pathways. Aquatic Toxicology, 2013, 126, 314-325.	1.9	51
29	Atlantic salmon (<i>Salmo salar</i>) require increased dietary levels of B-vitamins when fed diets with high inclusion of plant based ingredients. PeerJ, 2016, 4, e2493.	0.9	49
30	Antioxidant nutrition in Atlantic salmon (<i>Salmo salar</i>) parr and post-smolt, fed diets with high inclusion of plant ingredients and graded levels of micronutrients and selected amino acids. PeerJ, 2016, 4, e2688.	0.9	49
31	Associations Between Behavioral Effects of Bisphenol A and DNA Methylation in Zebrafish Embryos. Frontiers in Genetics, 2019, 10, 184.	1.1	49
32	Dietary histidine requirement to reduce the risk and severity of cataracts is higher than the requirement for growth in Atlantic salmon smolts, independently of the dietary lipid source. British Journal of Nutrition, 2014, 111, 1759-1772.	1.2	48
33	Toxicological effect of single contaminants and contaminant mixtures associated with plant ingredients in novel salmon feeds. Food and Chemical Toxicology, 2014, 73, 157-174.	1.8	48
34	Short-term starvation at low temperature prior to harvest does not impact the health and acute stress response of adult Atlantic salmon. PeerJ, 2017, 5, e3273.	0.9	47
35	Transcriptional effects of nonylphenol, bisphenol A and PBDE-47 in liver of juvenile Atlantic cod (Gadus morhua). Chemosphere, 2009, 75, 360-367.	4.2	45
36	Interpopulation differences in expression of candidate genes for salinity tolerance in winter migrating anadromous brown trout (Salmo trutta L.). BMC Genetics, 2008, 9, 12.	2.7	44

#	Article	IF	CITATIONS
37	Transcriptional effects of PFOS in isolated hepatocytes from Atlantic salmon Salmo salar L Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2008, 148, 14-22.	1.3	44
38	Differences in Salinity Tolerance and Gene Expression Between Two Populations of Atlantic Cod (Gadus morhua) in Response to Salinity Stress. Biochemical Genetics, 2012, 50, 454-466.	0.8	43
39	Modifying Effects of Vitamin E on Chlorpyrifos Toxicity in Atlantic Salmon. PLoS ONE, 2015, 10, e0119250.	1.1	43
40	Transcriptional effects on glutathione S-transferases in first feeding Atlantic cod (Gadus morhua) larvae exposed to crude oil. Chemosphere, 2010, 79, 905-913.	4.2	40
41	Transcriptional evidence for low contribution of oil droplets to acute toxicity from dispersed oil in first feeding Atlantic cod (Gadus morhua) larvae. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2011, 154, 333-345.	1.3	40
42	Transcriptional responses in juvenile Atlantic cod (Gadus morhua) after exposure to mercury-contaminated sediments obtained near the wreck of the German WW2 submarine U-864, and from Bergen Harbor, Western Norway. Chemosphere, 2011, 83, 552-563.	4.2	40
43	Is chemically dispersed oil more toxic to Atlantic cod (Gadus morhua) larvae than mechanically dispersed oil? A transcriptional evaluation. BMC Genomics, 2012, 13, 702.	1.2	40
44	Thermal stress alters expression of genes involved in one carbon and DNA methylation pathways in Atlantic cod embryos. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2014, 173, 17-27.	0.8	39
45	GILL METAL BINDING AND STRESS GENE TRANSCRIPTION IN BROWN TROUT (SALMO TRUTTA) EXPOSED TO METAL ENVIRONMENTS: THE EFFECT OF PRE-EXPOSURE IN NATURAL POPULATIONS. Environmental Toxicology and Chemistry, 2007, 26, 944.	2.2	38
46	Effects of combined γ-irradiation and metal (Al+Cd) exposures in Atlantic salmon (Salmo salar L.). Journal of Environmental Radioactivity, 2010, 101, 230-236.	0.9	36
47	Role of the GH-IGF-1 system in Atlantic salmon and rainbow trout postsmolts at elevated water temperature. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2015, 188, 127-138.	0.8	34
48	Imaging Flow Cytometry Protocols for Examining Phagocytosis of Microplastics and Bioparticles by Immune Cells of Aquatic Animals. Frontiers in Immunology, 2020, 11, 203.	2.2	34
49	Intestinal cellular localization of PCNA protein and CYP1A mRNA in Atlantic salmon Salmo salar L. exposed to a model toxicant. BMC Physiology, 2009, 9, 3.	3.6	33
50	Brown trout (Salmo trutta) metallothioneins as biomarkers for metal exposure in two Norwegian rivers. Biomarkers, 2001, 6, 274-288.	0.9	31
51	GENE EXPRESSION PROFILING IN ATLANTIC COD (GADUS MORHUA L.) FROM TWO CONTAMINATED SITES USING A CUSTOM-MADE cDNA MICROARRAY. Environmental Toxicology and Chemistry, 2009, 28, 1711.	2.2	31
52	Evaluation of candidate reference genes in Q-PCR studies of Atlantic cod (Gadus morhua) ontogeny, with emphasis on the gastrointestinal tract. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 2009, 152, 94-101.	0.7	31
53	Hepatic in vitro toxicity assessment of PBDE congeners BDE47, BDE153 and BDE154 in Atlantic salmon (Salmo salar L.). Aquatic Toxicology, 2011, 105, 246-263.	1.9	31
54	Effects of complete replacement of fish oil with plant oil on gastrointestinal cell death, proliferation and transcription of eight genes' encoding proteins responding to cellular stress in Atlantic salmon <i>Salmo salar</i> L Journal of Fish Biology, 2007, 71, 550-568.	0.7	30

#	Article	IF	CITATIONS
55	Pathogen recognition and mechanisms in Atlantic cod (Gadus morhua) head kidney cells. Fish and Shellfish Immunology, 2012, 33, 267-276.	1.6	30
56	Redox regulation in Atlantic cod (Gadus morhua) embryos developing under normal and heat-stressed conditions. Free Radical Biology and Medicine, 2013, 57, 29-38.	1.3	30
57	Stress-induced expression of protein disulfide isomerase associated 3 (PDIA3) in Atlantic salmon (Salmo salar L.). Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 2009, 154, 435-442.	0.7	29
58	Dietary pesticide chlorpyrifos-methyl affects arachidonic acid metabolism including phospholipid remodeling in Atlantic salmon (Salmo salar L.). Aquaculture, 2018, 484, 1-12.	1.7	29
59	Spatial transcription of CYP1A in fish liver. BMC Physiology, 2007, 7, 12.	3.6	28
60	Susceptibility of Atlantic salmon lenses to hydrogen peroxide oxidation ex vivo after being fed diets with vegetable oil and methylmercury. Experimental Eye Research, 2011, 92, 414-424.	1.2	28
61	Dietary lipids modulate methylmercury toxicity in Atlantic salmon. Food and Chemical Toxicology, 2011, 49, 3258-3271.	1.8	28
62	Effects of oil pollution and persistent organic pollutants (POPs) on glycerophospholipids in liver and brain of male Atlantic cod (Gadus morhua). Chemosphere, 2013, 90, 2157-2171.	4.2	28
63	Effects of Agricultural Pesticides in Aquafeeds on Wild Fish Feeding on Leftover Pellets Near Fish Farms. Frontiers in Genetics, 2019, 10, 794.	1.1	28
64	Evidence for oligomerization of metallothioneins in their functional state. Journal of Chromatography A, 2002, 979, 249-254.	1.8	27
65	Toxicological assessment of the anti-salmon lice drug diflubenzuron on Atlantic cod Gadus morhua. Diseases of Aquatic Organisms, 2013, 105, 27-43.	0.5	27
66	Precision-cut liver slices of Atlantic cod (Gadus morhua): An in vitro system for studying the effects of environmental contaminants. Aquatic Toxicology, 2014, 153, 110-115.	1.9	27
67	In vitro toxicity of pirimiphos-methyl in Atlantic salmon hepatocytes. Toxicology in Vitro, 2017, 39, 1-14.	1.1	27
68	Ontogenetic expression of maternal and zygotic genes in Atlantic cod embryos under ambient and thermally stressed conditions. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2011, 159, 196-205.	0.8	25
69	Fish pre-acclimation temperature only modestly affects cadmium toxicity in Atlantic salmon hepatocytes. Journal of Thermal Biology, 2016, 57, 21-34.	1.1	25
70	Factorial design applied for multiple endpoint toxicity evaluation in Atlantic salmon (Salmo salar L.) hepatocytes. Toxicology in Vitro, 2009, 23, 1455-1464.	1.1	24
71	Metal accumulation and metallothionein in brown trout, Salmo trutta, from two Norwegian rivers differently contaminated with Cd, Cu and Zn. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2001, 128, 189-201.	1.3	23
72	Effect of Marine Omega 3 Fatty Acids on Methylmercury-Induced Toxicity in Fish and Mammalian Cells <i>In Vitro</i> . Journal of Biomedicine and Biotechnology, 2012, 2012, 1-13.	3.0	23

#	Article	IF	CITATIONS
73	Recommendations for dietary level of micro-minerals and vitamin D ₃ to Atlantic salmon (<i>Salmo salar</i>) parr and post-smolt when fed low fish meal diets. PeerJ, 2019, 7, e6996.	0.9	23
74	Characterisation and expression of secretory phospholipase A2 group IB during ontogeny of Atlantic cod (Gadus morhua). British Journal of Nutrition, 2011, 105, 228-237.	1.2	22
75	Dietary methylmercury alters the proteome in Atlantic salmon (Salmo salar) kidney. Aquatic Toxicology, 2012, 108, 70-77.	1.9	22
76	Metabolic signatures of bisphenol A and genistein in Atlantic salmon liver cells. Chemosphere, 2017, 189, 730-743.	4.2	22
77	Pharmacokinetics and transcriptional effects of the anti-salmon lice drug emamectin benzoate in Atlantic salmon (Salmo salar L.). BMC Pharmacology, 2008, 8, 16.	0.4	21
78	Transcriptional responses to teflubenzuron exposure in European lobster (Homarus gammarus). Aquatic Toxicology, 2015, 167, 143-156.	1.9	21
79	Endocrine effects of real-life mixtures of persistent organic pollutants (POP) in experimental models and wild fish. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2016, 79, 538-548.	1.1	21
80	Do anesthetics and sampling strategies affect transcription analysis of fish tissues?. BMC Molecular Biology, 2007, 8, 48.	3.0	20
81	Long-term exposure of Atlantic cod (Gadus morhua) to components of produced water: condition, gonad maturation, and gene expression. Canadian Journal of Fisheries and Aquatic Sciences, 2010, 67, 1685-1698.	0.7	20
82	Omega-3 and alpha-tocopherol provide more protection against contaminants in novel feeds for Atlantic salmon (Salmo salar L.) than omega-6 and gamma tocopherol. Toxicology Reports, 2016, 3, 211-224.	1.6	20
83	Offshore Crude Oil Disrupts Retinoid Signaling and Eye Development in Larval Atlantic Haddock. Frontiers in Marine Science, 2019, 6, .	1.2	20
84	Lens metabolomic profiling as a tool to understand cataractogenesis in Atlantic salmon and rainbow trout reared at optimum and high temperature. PLoS ONE, 2017, 12, e0175491.	1.1	20
85	Aryl hydrocarbon receptor protein and Cyp1A1 gene induction by LPS and phenanthrene in Atlantic cod (Gadus morhua) head kidney cells. Fish and Shellfish Immunology, 2014, 40, 384-391.	1.6	19
86	Exposure of first-feeding cod larvae to dispersed crude oil results in similar transcriptional and metabolic responses as food deprivation. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2016, 79, 558-571.	1.1	19
87	Variations in heavy metal concentrations and speciation in two miningâ€polluted streams in central Norway. Environmental Toxicology and Chemistry, 2001, 20, 978-984.	2.2	18
88	Transcriptional responses in Atlantic salmon (Salmo salar) exposed to deltamethrin, alone or in combination with azamethiphos. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2014, 162, 23-33.	1.3	18
89	Ontogeny of redox regulation in Atlantic cod (Gadus morhua) larvae. Free Radical Biology and Medicine, 2014, 73, 337-348.	1.3	18
90	Transcriptional effects of dietary chlorpyrifos‑methyl exposure in Atlantic salmon (Salmo salar) brain and liver. Comparative Biochemistry and Physiology Part D: Genomics and Proteomics, 2019, 29, 43-54.	0.4	18

#	Article	IF	CITATIONS
91	Endosulfan in vitro toxicity in Atlantic salmon hepatocytes obtained from fish fed either fish oil or vegetable oil. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2010, 151, 175-186.	1.3	17
92	Toxicological application of primary hepatocyte cell cultures of Atlantic cod (Gadus morhua) — Effects of BNF, PCDD and Cd. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2010, 151, 401-411.	1.3	17
93	Metallothioneins from horse kidney studied by separation with capillary zone electrophoresis below and above the isoelectric points. Talanta, 2002, 57, 707-720.	2.9	16
94	Gene-expression profiling in gill and liver of zebrafish exposed to produced water. International Journal of Environmental Analytical Chemistry, 2007, 87, 195-210.	1.8	16
95	The impact of different water gas levels on cataract formation, muscle and lens free amino acids, and lens antioxidant enzymes and heat shock protein mRNA abundance in smolting Atlantic salmon, Salmo salar L Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2008. 149. 396-404.	0.8	16
96	Mercury contamination in deep-water fish: Transcriptional responses in tusk (Brosme brosme) from a fjord gradient. Aquatic Toxicology, 2013, 144-145, 172-185.	1.9	16
97	Exploring Early Micronutrient Deficiencies in Rainbow Trout (Oncorhynchus mykiss) by Next-Generation Sequencing Technology – From Black Box to Functional Genomics. PLoS ONE, 2013, 8, e69461.	1.1	16
98	DNA damage and health effects in juvenile haddock (Melanogrammus aeglefinus) exposed to PAHs associated with oil-polluted sediment or produced water. PLoS ONE, 2020, 15, e0240307.	1.1	16
99	Transcriptional profiling in burbot (Lota lota) from Lake MjĄ̃sa—A Norwegian Lake contaminated by several organic pollutants. Ecotoxicology and Environmental Safety, 2013, 92, 94-103.	2.9	15
100	Metabolic effects of p,p′â€DDE on Atlantic salmon hepatocytes. Journal of Applied Toxicology, 2018, 38, 489-503.	1.4	15
101	Genome-wide transcription analysis of histidine-related cataract in Atlantic salmon (Salmo salar L). Molecular Vision, 2009, 15, 1332-50.	1.1	15
102	Are Atlantic Cod in Store Lungegårdsvann, a Seawater Recipient in Bergen, Affected by Environmental Contaminants? A qRT-PCR Survey. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2009, 72, 140-154.	1.1	14
103	Effects of environmental relevant doses of pollutants from offshore oil production on Atlantic cod (Gadus morhua). Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2009, 150, 141-149.	1.3	14
104	Low impact of exposure to environmentally relevant doses of 226Ra in Atlantic cod (Gadus morhua) embryonic cells. Journal of Environmental Radioactivity, 2012, 109, 84-93.	0.9	14
105	Effect of different dietary vitamin B ₁₂ levels on their retention in the body of zebrafish <i>Danio rerio</i> and on the gene expression of vitamin B ₁₂ binding proteins. Aquaculture Nutrition, 2013, 19, 413-420.	1.1	14
106	Sublethal effects in Atlantic salmon (Salmo salar) exposed to mixtures of copper, aluminium and gamma radiation. Journal of Environmental Radioactivity, 2013, 121, 33-42.	0.9	14
107	Metallothionein isoforms from horse, rabbit and rat separated by capillary zone electrophoresis at low pH. Talanta, 1998, 46, 291-300.	2.9	12
108	The partial pressure of oxygen affects biomarkers of oxidative stress in cultured rainbow trout (Oncorhynchus mykiss) hepatocytes. Toxicology in Vitro, 2008, 22, 1657-1661.	1.1	12

#	Article	IF	CITATIONS
109	Impact of dietary selenium on methylmercury toxicity in juvenile Atlantic cod: A transcriptional survey. Chemosphere, 2015, 120, 199-205.	4.2	12
110	Chlorpyrifos-induced dysfunction of lipid metabolism is not restored by supplementation of polyunsaturated fatty acids EPA and ARA in Atlantic salmon liver cells. Toxicology in Vitro, 2019, 61, 104655.	1.1	12
111	Wholeâ€animal accumulation, oxidative stress, transcriptomic and metabolomic responses in the pink shrimp (<scp><i>Pandalus montagui</i></scp>) exposed to teflubenzuron. Journal of Applied Toxicology, 2019, 39, 485-497.	1.4	12
112	Fluorescent Microplastic Uptake by Immune Cells of Atlantic Salmon (Salmo salar L.). Frontiers in Environmental Science, 2020, 8, .	1.5	12
113	Mixture toxicity of chlorpyrifos-methyl, pirimiphos-methyl, and nonylphenol in Atlantic salmon (Salmo salar) hepatocytes. Toxicology Reports, 2020, 7, 547-558.	1.6	12
114	Oxidative stress responses in rainbow trout (Oncorhynchus mykiss) hepatocytes exposed to pro-oxidants and a complex environmental sample. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2010, 151, 431-438.	1.3	10
115	Benzo(a)pyrene reduces osteoclast and osteoblast activity in ex-vivo scales of zebrafish (<i>Danio) Tj ETQq1 1 0. of Applied Ichthyology, 2018, 34, 431-439.</i>	.784314 rg 0.3	gBT /Overlo <mark>c</mark> t 10
116	Effects of mining chemicals on fish: exposure to tailings containing Lilaflot D817M induces CYP1A transcription in Atlantic salmon smolt. BMC Research Notes, 2015, 8, 389.	0.6	9
117	β-naphthoflavone interferes with cyp1c1, cox2 and IL-8 gene transcription and leukotriene B4 secretion in Atlantic cod (Gadus morhua) head kidney cells during inflammation. Fish and Shellfish Immunology, 2016, 54, 128-134.	1.6	9
118	Bioaccumulation of mercury and transcriptional responses in tusk (Brosme brosme), a deep-water fish from a Norwegian fjord. Chemosphere, 2021, 279, 130588.	4.2	9
119	Expression of genes regulating protein metabolism in Atlantic cod (Gadus morhua L.) was altered when including high diet levels of plant proteins. Aquaculture Nutrition, 2011, 17, 33-43.	1.1	8
120	Transcriptional Effects of Dietary Exposure of Oil-Contaminated <i>Calanus finmarchicus</i> in Atlantic Herring (<i>Clupea harengus</i>). Journal of Toxicology and Environmental Health - Part A: Current Issues, 2011, 74, 508-528.	1.1	8
121	Impact of teflubenzuron on the rockpool shrimp (Palaemon elegans). Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2017, 201, 35-43.	1.3	8
122	Multi-laboratory evaluation of a PCR method for detection of ruminant DNA in commercial processed animal proteins. Food Control, 2017, 73, 140-146.	2.8	8
123	Comparing novel shotgun DNA sequencing and state-of-the-art proteomics approaches for authentication of fish species in mixed samples. Food Control, 2022, 131, 108417.	2.8	8
124	Toxic effects of dietary hydrolysed lipids: an in vivo study on fish larvae. British Journal of Nutrition, 2013, 109, 1071-1081.	1.2	6
125	Rotifers enriched with iodine, copper and manganese had no effect on larval cod (<i>Gadus) Tj ETQq1 1 0.78431 46, 1793-1800.</i>	4 rgBT /O 0.9	verlock 10 Tf 6
126	A transcriptomic analysis of diploid and triploid Atlantic salmon lenses with and without cataracts. Experimental Eye Research, 2020, 199, 108150.	1.2	6

#	Article	IF	CITATIONS
127	In vitro toxicity of glyphosate in Atlantic salmon evaluated with a 3D hepatocyte-kidney co-culture model. Food and Chemical Toxicology, 2022, 164, 113012.	1.8	5
128	Characterization of an Atlantic cod (Gadus morhua) embryonic stem cell cDNA library. BMC Research Notes, 2009, 2, 74.	0.6	4
129	Optimisation of gene expression analysis in Atlantic salmon lenses by refining sampling strategy and tissue storage. Fish Physiology and Biochemistry, 2010, 36, 1217-1225.	0.9	4
130	Development of a co-culture model for in vitro toxicological studies in Atlantic salmon. Toxicology in Vitro, 2011, 25, 1143-1152.	1.1	4
131	Polycyclic aromatic hydrocarbons modulate the activity of Atlantic cod (Gadus morhua) vitamin D receptor paralogs in vitro. Aquatic Toxicology, 2021, 238, 105914.	1.9	4
132	Ontogeny-Specific Skeletal Deformities in Atlantic Haddock Caused by Larval Oil Exposure. Frontiers in Marine Science, 2021, 8, .	1.2	4
133	The mining chemical Polydadmac is cytotoxic but does not interfere with Cu-induced toxicity in Atlantic salmon hepatocytes. Toxicology in Vitro, 2015, 30, 492-505.	1.1	3
134	Transcriptional effects of metal-rich acid drainage water from the abandoned LÃ,kken Mine on Atlantic salmon (<i>Salmo salar</i>) smolt. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2016, 79, 612-632.	1.1	3
135	Effects of marine mine tailing exposure on the development, growth, and lipid accumulation in Calanus finmarchicus. Chemosphere, 2021, 282, 131051.	4.2	3
136	In vitro Assessment of Hg Toxicity in Hepatocytes from Heat-Stressed Atlantic Salmon. Biological Trace Element Research, 2016, 174, 226-239.	1.9	2
137	Effects of mine tailing exposure on early life stages of cod (Gadus morhua) and haddock (Melanogrammus aeglefinus). Environmental Research, 2021, 200, 111447.	3.7	2
138	Dietary chlorpyrifos-methyl exposure impair transcription of immune-, detoxification- and redox signaling genes in leukocytes isolated from cod (Gadus morhua). Fish and Shellfish Immunology, 2022, 127, 549-560.	1.6	1
139	Endocrine and hepatic detoxification responses to environmental stress in wild cod (Gadus morhua) of Trondheim Harbor, Norway. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2012, 163, S37-S38.	0.8	0
140	Toxicological effect of single contaminants and contaminant mixtures associated with plant ingredients in novel salmon feeds. Toxicology Letters, 2014, 229, S212-S213.	0.4	0
141	Exposure to low environmental copper concentrations does not affect survival and development in Atlantic cod (Gadus morhua) early life stages. Toxicology Reports, 2021, 8, 1909-1916.	1.6	0