Chandrashekhar D Patil

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5096484/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Larvicidal potential of silver nanoparticles synthesized using fungus Cochliobolus lunatus against Aedes aegypti (Linnaeus, 1762) and Anopheles stephensi Liston (Diptera; Culicidae). Parasitology Research, 2011, 109, 823-831.	1.6	174
2	Plant Extract: A Promising Biomatrix for Ecofriendly, Controlled Synthesis of Silver Nanoparticles. Applied Biochemistry and Biotechnology, 2014, 173, 1-29.	2.9	170
3	Larvicidal activity of silver nanoparticles synthesized using Plumeria rubra plant latex against Aedes aegypti and Anopheles stephensi. Parasitology Research, 2012, 110, 1815-1822.	1.6	159
4	Larvicidal activity of silver nanoparticles synthesized using Pergularia daemia plant latex against Aedes aegypti and Anopheles stephensi and nontarget fish Poecillia reticulata. Parasitology Research, 2012, 111, 555-562.	1.6	127
5	Biosynthesis of Silver Nanoparticles Using Latex from Few Euphorbian Plants and Their Antimicrobial Potential. Applied Biochemistry and Biotechnology, 2012, 167, 776-790.	2.9	116
6	Prodigiosin produced by Serratia marcescens NMCC46 as a mosquito larvicidal agent against Aedes aegypti and Anopheles stephensi. Parasitology Research, 2011, 109, 1179-1187.	1.6	87
7	Antimicrobial activity of prodigiosin is attributable to plasma-membrane damage. Natural Product Research, 2017, 31, 572-577.	1.8	73
8	Studies on Characterization of Bioflocculant Exopolysaccharide of Azotobacter indicus and Its Potential for Wastewater Treatment. Applied Biochemistry and Biotechnology, 2011, 163, 463-472.	2.9	72
9	Studies on Production and Biological Potential of Prodigiosin by Serratia marcescens. Applied Biochemistry and Biotechnology, 2014, 173, 1209-1221.	2.9	72
10	Towards an understanding of bacterial metabolites prodigiosin andÂviolacein and their potential for use in commercial sunscreens. International Journal of Cosmetic Science, 2015, 37, 98-107.	2.6	71
11	In vitro antiparasitic activity of microbial pigments and their combination with phytosynthesized metal nanoparticles. Parasitology International, 2015, 64, 353-356.	1.3	69
12	Trypsin inactivation by latex fabricated gold nanoparticles: A new strategy towards insect control. Enzyme and Microbial Technology, 2016, 92, 18-25.	3.2	62
13	Environmental and socioeconomic effects of mosquito control in Europe using the biocide Bacillus thuringiensis subsp. israelensis (Bti). Science of the Total Environment, 2020, 724, 137800.	8.0	62
14	Dysregulation of Cell Signaling by SARS-CoV-2. Trends in Microbiology, 2021, 29, 224-237.	7.7	62
15	Bioefficacy of Plumbago zeylanica (Plumbaginaceae) and Cestrum nocturnum (Solanaceae) plant extracts against Aedes aegypti (Diptera: Culicide) and nontarget fish Poecilia reticulata. Parasitology Research, 2011, 108, 1253-1263.	1.6	61
16	Studies on Silver Accumulation and Nanoparticle Synthesis By Cochliobolus lunatus. Applied Biochemistry and Biotechnology, 2011, 165, 221-234.	2.9	61
17	Nematicidal activity of microbial pigment from <i>Serratia marcescens</i> . Natural Product Research, 2014, 28, 1399-1404.	1.8	55
18	Mosquito larvicidal and pupaecidal potential of prodigiosin from Serratia marcescens and understanding its mechanism of action. Pesticide Biochemistry and Physiology, 2015, 123, 49-55.	3.6	49

CHANDRASHEKHAR D PATIL

#	Article	IF	CITATIONS
19	Alteration in Bacillus thuringiensis toxicity by curing gut flora: novel approach for mosquito resistance management. Parasitology Research, 2013, 112, 3283-3288.	1.6	39
20	Phyto-Synthesized Silver Nanoparticles: A Potent Mosquito Biolarvicidal Agent. Journal of Nanomedicine & Biotherapeutic Discovery, 2013, 03, .	0.6	37
21	Bioflocculant Exopolysaccharide Production by Azotobacter indicus Using Flower Extract of Madhuca latifolia L. Applied Biochemistry and Biotechnology, 2010, 162, 1095-1108.	2.9	36
22	Mechanistic approach for fabrication of gold nanoparticles by NitzschiaÂdiatom and theirÂantibacterial activity. Bioprocess and Biosystems Engineering, 2017, 40, 1437-1446.	3.4	35
23	Amoebicidal activity of phytosynthesized silver nanoparticles and their <i>in vitro</i> cytotoxicity to human cells. FEMS Microbiology Letters, 2013, 345, 127-131.	1.8	34
24	OPTN is a host intrinsic restriction factor against neuroinvasive HSV-1 infection. Nature Communications, 2021, 12, 5401.	12.8	33
25	Insecticidal potency of bacterial species Bacillus thuringiensis SV2 and Serratia nematodiphila SV6 against larvae of mosquito species Aedes aegypti, Anopheles stephensi, and Culex quinquefasciatus. Parasitology Research, 2012, 110, 1841-1847.	1.6	31
26	Phytolatex synthesized gold nanoparticles as novel agent to enhance sun protection factor of commercial sunscreens. International Journal of Cosmetic Science, 2014, 36, 571-578.	2.6	31
27	Bio-Functionalized Silver Nanoparticles: a Novel Colorimetric Probe for Cysteine Detection. Applied Biochemistry and Biotechnology, 2015, 175, 3479-3493.	2.9	29
28	Bacterial microbiota of Aedes aegypti mosquito larvae is altered by intoxication with Bacillus thuringiensis israelensis. Parasites and Vectors, 2018, 11, 121.	2.5	29
29	Ficus carica Latex-Mediated Synthesis of Silver Nanoparticles and Its Application as a Chemophotoprotective Agent. Applied Biochemistry and Biotechnology, 2013, 171, 676-688.	2.9	28
30	Biofunctionalized silver nanoparticles as a novel colorimetric probe for melamine detection in raw milk. Biotechnology and Applied Biochemistry, 2015, 62, 652-662.	3.1	25
31	Potential of extracts of the tropical plant Balanites aegyptiaca (L) Del. (Balanitaceae) to control the mealy bug, Maconellicoccus hirsutus (Homoptera: Pseudococcidae). Crop Protection, 2010, 29, 1293-1296.	2.1	22
32	Transformation of aromatic dyes using green synthesized silver nanoparticles. Bioprocess and Biosystems Engineering, 2014, 37, 1695-1705.	3.4	22
33	Bacterial Pigment Prodigiosin Demonstrates a Unique Antiherpesvirus Activity That Is Mediated through Inhibition of Prosurvival Signal Transducers. Journal of Virology, 2020, 94, .	3.4	20
34	Innovative approach for urease inhibition by <i>Ficus carica</i> extract–fabricated silver nanoparticles: An <i>in vitro</i> study. Biotechnology and Applied Biochemistry, 2015, 62, 780-784.	3.1	19
35	Environmental Metabolic Footprinting: A novel application to study the impact of a natural and a synthetic β-triketone herbicide in soil. Science of the Total Environment, 2016, 566-567, 552-558.	8.0	19
36	Mercury sensing and toxicity studies of novel latex fabricated silver nanoparticles. Bioprocess and Biosystems Engineering, 2014, 37, 2223-2233.	3.4	18

#	Article	IF	CITATIONS
37	Fluconazole treatment enhances extracellular release of red pigments in the fungus Monascus purpureus. FEMS Microbiology Letters, 2017, 364, .	1.8	15
38	Large expert-curated database for benchmarking document similarity detection in biomedical literature search. Database: the Journal of Biological Databases and Curation, 2019, 2019, .	3.0	15
39	Disruption of innate defense responses by endoglycosidase HPSE promotes cell survival. JCI Insight, 2021, 6, .	5.0	14
40	Evaluation of Different Culture Media for Improvement in Bioinsecticides Production by IndigenousBacillus thuringiensisand Their Application against Larvae ofAedes aegypti. Scientific World Journal, The, 2014, 2014, 1-6.	2.1	13
41	Studies on Amendment of Different Biopolymers in Sandy Loam and Their Effect on Germination, Seedling Growth of Gossypium herbaceum L Applied Biochemistry and Biotechnology, 2011, 163, 780-791.	2.9	12
42	Catalytic and synergistic antibacterial potential of green synthesized silver nanoparticles: Their ecotoxicological evaluation on <i>Poecillia reticulata</i> . Biotechnology and Applied Biochemistry, 2014, 61, 385-394.	3.1	12
43	Improved method for effective screening of ACC (1-aminocyclopropane-1-carboxylate) deaminase producing microorganisms. Journal of Microbiological Methods, 2016, 131, 102-104.	1.6	12
44	Screening of Rubiaceae and Apocynaceae extracts for mosquito larvicidal potential. Natural Product Research, 2015, 29, 353-358.	1.8	11
45	OPTN (optineurin)-mediated selective autophagy prevents neurodegeneration due to herpesvirus infection. Autophagy, 2022, 18, 944-945.	9.1	9
46	Effect of wax degrading bacteria on life cycle of the pink hibiscus mealybug, Maconellicoccus hirsutus (Green) (Hemiptera: Pseudococcidae). BioControl, 2013, 58, 535-542.	2.0	8
47	Protease, Growth Factor, and Heparanase-Mediated Syndecan-1 Shedding Leads to Enhanced HSV-1 Egress. Viruses, 2021, 13, 1748.	3.3	8
48	Studies on life cycle of mealybug, Maconellicoccus hirsutus (Green) (Hemiptera: Pseudococcidae), on different hosts at different constant temperatures. Crop Protection, 2011, 30, 1553-1556.	2.1	7
49	Electrospray ionization and heterogeneous matrix effects in liquid chromatography/mass spectrometry based metaâ€metabolomics: A biomarker or a suppressed ion?. Rapid Communications in Mass Spectrometry, 2021, 35, e8977.	1.5	7
50	Dissociation of DNA damage sensing by endoglycosidase HPSE. IScience, 2021, 24, 102242.	4.1	7
51	Entry receptor bias in evolutionarily distant HSV-1 clinical strains drives divergent ocular and nervous system pathologies. Ocular Surface, 2021, 21, 238-249.	4.4	7
52	Production of the bioinsecticide <i>Bacillus thuringiensis</i> subsp. <i>israelensis</i> with deltamethrin increases toxicity towards mosquito larvae. Letters in Applied Microbiology, 2013, 57, 151-156.	2.2	5
53	Inhibition of restriction endonucleases by biofunctionalized silver nanoparticles: An in vitro study. Materials Letters, 2014, 134, 24-26.	2.6	5
54	Synergistic effect of certain insecticides combined with Bacillus thuringiensis on mosquito larvae. Journal of Entomological and Acarological Research, 2017, 49, .	0.7	5

#	Article	IF	CITATIONS
55	Phytosynthesized Gold Nanoparticles-Bacillus thuringiensis (Bt–GNP) Formulation: A Novel Photo Stable Preparation Against Mosquito Larvae. Journal of Cluster Science, 2018, 29, 577-583.	3.3	5
56	Heparan Sulfate Binding Cationic Peptides Restrict SARS-CoV-2 Entry. Pathogens, 2021, 10, 803.	2.8	5
57	Nanoengineered Antiviral Fibrous Arrays with Rose-Thorn-Inspired Architectures. , 2021, 3, 1566-1571.		5
58	Intrinsic Antiviral Activity of Optineurin Prevents Hyperproliferation of a Primary Herpes Simplex Virus Type 2 Infection. Journal of Immunology, 2022, 208, 63-73.	0.8	5
59	Effect of Different Carbon Sources on Morphology and Silver Accumulation in Cochliobolus lunatus. Applied Biochemistry and Biotechnology, 2015, 177, 1409-1423.	2.9	4
60	Fabrication of Paper Sensor for Rapid Screening of Nanomaterial Synthesizing Potential of Plants. Journal of Cluster Science, 2018, 29, 737-742.	3.3	4
61	Azotobacter. , 2020, , 397-426.		4
62	Heparanase-Induced Activation of AKT Stabilizes β-Catenin and Modulates Wnt/β-Catenin Signaling during Herpes Simplex Virus 1 Infection. MBio, 2021, 12, e0279221.	4.1	4
63	Use of protease inhibitory gold nanoparticles as a compatibility enhancer for Bt and deltamethrin: A novel approach for pest control. Biocatalysis and Agricultural Biotechnology, 2016, 8, 8-12.	3.1	3
64	Agrobacterium tumefaciens-Mediated Genetic Transformation of the Ect-endomycorrhizal Fungus Terfezia boudieri. Genes, 2020, 11, 1293.	2.4	3
65	mTORC2 confers neuroprotection and potentiates immunity during virus infection. Nature Communications, 2021, 12, 6020.	12.8	3
66	Maintenance of residual activity of Bt toxin by using natural and synthetic dyes: a novel approach for sustainable mosquito vector control. Natural Product Research, 2015, 29, 2350-2354.	1.8	1
67	Mosquito Larvicidal Potential of Gossypium hirsutum (Bt cotton) Leaves Extracts against Aedes aegypti and Anopheles stephensi larvae. Journal of Arthropod-Borne Diseases, 2014, 8, 91-101.	0.9	1
68	Isolation and Screening of : Modern Bioinputs for. Springer Protocols, 2022, , 237-242.	0.3	0
69	Recent advancements and nanotechnological interventions in diagnosis, treatment, and vaccination for COVID-19. , 2022, , 279-303.		0