Tadhg Kennedy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5096408/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	High-Performance Germanium Nanowire-Based Lithium-Ion Battery Anodes Extending over 1000 Cycles Through in Situ Formation of a Continuous Porous Network. Nano Letters, 2014, 14, 716-723.	4.5	317
2	Advances in the Application of Silicon and Germanium Nanowires for Highâ€Performance Lithiumâ€lon Batteries. Advanced Materials, 2016, 28, 5696-5704.	11.1	171
3	Synthesis of Tin Catalyzed Silicon and Germanium Nanowires in a Solvent–Vapor System and Optimization of the Seed/Nanowire Interface for Dual Lithium Cycling. Chemistry of Materials, 2013, 25, 1816-1822.	3.2	88
4	Understanding the influence of electrolyte additives on the electrochemical performance and morphology evolution of silicon nanowire based lithium-ion battery anodes. Journal of Power Sources, 2017, 359, 601-610.	4.0	84
5	Nanowire Heterostructures Comprising Germanium Stems and Silicon Branches as High-Capacity Li-Ion Anodes with Tunable Rate Capability. ACS Nano, 2015, 9, 7456-7465.	7.3	80
6	Behavior of Germanium and Silicon Nanowire Anodes with Ionic Liquid Electrolytes. ACS Nano, 2017, 11, 5933-5943.	7.3	69
7	Review—Use of Impedance Spectroscopy for the Estimation of Li-ion Battery State of Charge, State of Health and Internal Temperature. Journal of the Electrochemical Society, 2021, 168, 080517.	1.3	65
8	Direct Synthesis of Alloyed Si _{1–<i>x</i>} Ge _{<i>x</i>} Nanowires for Performance-Tunable Lithium Ion Battery Anodes. ACS Nano, 2017, 11, 10088-10096.	7.3	64
9	Progress and perspectives on alloying-type anode materials for advanced potassium-ion batteries. Materials Today, 2021, 48, 241-269.	8.3	51
10	A Rapid, Solvent-Free Protocol for the Synthesis of Germanium Nanowire Lithium-Ion Anodes with a Long Cycle Life and High Rate Capability. ACS Applied Materials & Interfaces, 2014, 6, 18800-18807.	4.0	50
11	Dense Silicon Nanowire Networks Grown on a Stainlessâ€Steel Fiber Cloth: A Flexible and Robust Anode for Lithiumâ€Ion Batteries. Advanced Materials, 2021, 33, e2105917.	11.1	46
12	High Density Growth of Indium seeded Silicon Nanowires in the Vapor phase of a High Boiling Point Solvent. Chemistry of Materials, 2012, 24, 2204-2210.	3.2	45
13	In-situ continuous hydrothermal synthesis of TiO2 nanoparticles on conductive N-doped MXene nanosheets for binder-free Li-ion battery anodes. Chemical Engineering Journal, 2022, 430, 132976.	6.6	33
14	Core–Shell Tin Oxide, Indium Oxide, and Indium Tin Oxide Nanoparticles on Silicon with Tunable Dispersion: Electrochemical and Structural Characteristics as a Hybrid Li-Ion Battery Anode. ACS Applied Materials & Interfaces, 2013, 5, 8195-8202.	4.0	27
15	Direct Growth of Si, Ge, and Si–Ge Heterostructure Nanowires Using Electroplated Zn: An Inexpensive Seeding Technique for Liâ€Ion Alloying Anodes. Small, 2021, 17, e2005443.	5.2	26
16	Electrochemical impedance correlation analysis for the estimation of Li-ion battery state of charge, state of health and internal temperature. Journal of Energy Storage, 2022, 50, 104608.	3.9	26
17	Tunable Core–Shell Nanowire Active Material for High Capacity Li-Ion Battery Anodes Comprised of PECVD Deposited aSi on Directly Grown Ge Nanowires. ACS Applied Materials & Interfaces, 2019, 11, 19372-19380.	4.0	24
18	Real-time internal temperature estimation of commercial Li-ion batteries using online impedance measurements. Journal of Power Sources, 2022, 519, 230786.	4.0	24

TADHG KENNEDY

#	Article	IF	CITATIONS
19	Enhancing the performance of germanium nanowire anodes for Li-ion batteries by direct growth on textured copper. Chemical Communications, 2019, 55, 7780-7783.	2.2	23
20	Solution synthesis of lead seeded germanium nanowires and branched nanowire networks and their application as Li-ion battery anodes. Nanotechnology, 2017, 28, 255603.	1.3	19
21	Influence of Carbonate-Based Additives on the Electrochemical Performance of Si NW Anodes Cycled in an Ionic Liquid Electrolyte. Nano Letters, 2020, 20, 7011-7019.	4.5	18
22	Online state of health estimation of Li-ion polymer batteries using real time impedance measurements. Applied Energy, 2022, 307, 118210.	5.1	16
23	Amorphization driven Na-alloying in Si _{<i>x</i>} Ge _{1â^'<i>x</i>} alloy nanowires for Na-ion batteries. Journal of Materials Chemistry A, 2021, 9, 20626-20634.	5.2	12
24	Silicon nanowire growth on carbon cloth for flexible Li-ion battery anodes. Materials Today Energy, 2022, 27, 101030.	2.5	11
25	Comparing nanoparticles for drug delivery: The effect of physiological dispersion media on nanoparticle properties. Materials Science and Engineering C, 2020, 113, 110985.	3.8	9
26	A Universal Study on the Effect Thermal Imidization Has on the Physico-Chemical, Mechanical, Thermal and Electrical Properties of Polyimide for Integrated Electronics Applications. Polymers, 2022, 14, 1713.	2.0	7
27	High density and patternable growth of silicon, germanium and alloyed SiGe nanowires by a rapid anneal protocol. Journal of Materials Chemistry C, 2015, 3, 7455-7462.	2.7	6
28	Tin-Based Oxide, Alloy, and Selenide Li-Ion Battery Anodes Derived from a Bimetallic Metal–Organic Material. Journal of Physical Chemistry C, 2021, 125, 1180-1189.	1.5	6
29	Highlighting the Importance of Full-Cell Testing for High Performance Anode Materials Comprising Li Alloying Nanowires. Journal of the Electrochemical Society, 2019, 166, A2784-A2790.	1.3	4
30	Temperature induced diameter variation of silicon nanowires <i>via</i> a liquid–solid phase transition in the Zn seed. Chemical Communications, 2021, 57, 12504-12507.	2.2	4
31	Rechargeable Li-Ion Battery Anode of Indium Oxide with Visible to Infra-Red Transparency. ECS Transactions, 2013, 53, 53-61.	0.3	3