List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5096125/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The preparation and antibacterial effects of dopa-cotton/AgNPs. Applied Surface Science, 2011, 257, 6799-6803.	3.1	136
2	Cellulose Sponge Supported Palladium Nanoparticles as Recyclable Cross-Coupling Catalysts. ACS Applied Materials & Interfaces, 2017, 9, 17155-17162.	4.0	124
3	A naked-eye detection polyvinyl alcohol/cellulose-based pH sensor for intelligent packaging. Carbohydrate Polymers, 2020, 233, 115859.	5.1	96
4	Durable flame retardant and antibacterial finishing on cotton fabrics with cyclotriphosphazene/polydopamine/silver nanoparticles hybrid coatings. Applied Surface Science, 2018, 435, 1337-1343.	3.1	92
5	Selfâ€Healing Polysaccharide Hydrogel Based on Dynamic Covalent Enamine Bonds. Macromolecular Materials and Engineering, 2016, 301, 725-732.	1.7	90
6	Facile fabrication of redox/pH dual stimuli responsive cellulose hydrogel. Carbohydrate Polymers, 2017, 176, 299-306.	5.1	86
7	High-performance textile electrodes for wearable electronics obtained by an improved in situ polymerization method. Chemical Engineering Journal, 2019, 361, 897-907.	6.6	86
8	Durable antibacterial and hydrophobic cotton fabrics utilizing enamine bonds. Carbohydrate Polymers, 2019, 211, 173-180.	5.1	76
9	Cellulosic sponges with pH responsive wettability for efficient oil-water separation. Carbohydrate Polymers, 2020, 237, 116133.	5.1	74
10	Biodegradable regenerated cellulose-dispersed composites with improved properties via a pickering emulsion process. Carbohydrate Polymers, 2018, 179, 86-92.	5.1	65
11	Poly(lactic acid)/cellulose nanocrystal composites via the Pickering emulsion approach: Rheological, thermal and mechanical properties. International Journal of Biological Macromolecules, 2019, 137, 197-204.	3.6	63
12	Polysaccharide-based edible emulsion gel stabilized by regenerated cellulose. Food Hydrocolloids, 2019, 91, 232-237.	5.6	63
13	Poly(lactic acid)/lignin blends prepared with the Pickering emulsion template method. European Polymer Journal, 2019, 110, 378-384.	2.6	63
14	A Nature-Inspired Monolithic Integrated Cellulose Aerogel-Based Evaporator for Efficient Solar Desalination. ACS Applied Materials & Interfaces, 2021, 13, 10612-10622.	4.0	61
15	Lasting superhydrophobicity and antibacterial activity of Cu nanoparticles immobilized on the surface of dopamine modified cotton fabrics. Surface and Coatings Technology, 2017, 309, 149-154.	2.2	60
16	Catalytic MOF-loaded cellulose sponge for rapid degradation of chemical warfare agents simulant. Carbohydrate Polymers, 2019, 213, 184-191.	5.1	60
17	Cellulose nanofibril-reinforced biodegradable polymer composites obtained via a Pickering emulsion approach. Cellulose, 2017, 24, 3313-3322.	2.4	59
18	Chitosan-bound carboxymethylated cotton fabric and its application as wound dressing. Carbohydrate Polymers, 2019, 221, 202-208.	5.1	59

#	Article	IF	CITATIONS
19	Mechanically flexible, waterproof, breathable cellulose/polypyrrole/polyurethane composite aerogels as wearable heaters for personal thermal management. Chemical Engineering Journal, 2020, 402, 126222.	6.6	59
20	Self-healing and injectable polysaccharide hydrogels with tunable mechanical properties. Cellulose, 2018, 25, 559-571.	2.4	58
21	Flexible and Robust Bacterial Celluloseâ€Based Ionogels with High Thermoelectric Properties for Lowâ€Grade Heat Harvesting. Advanced Functional Materials, 2022, 32, 2107105.	7.8	57
22	Facile synthesis of microfibrillated cellulose/organosilicon/polydopamine composite sponges with flame retardant properties. Cellulose, 2017, 24, 3815-3823.	2.4	55
23	Chemical crosslinking reinforced flexible cellulose nanofiber-supported cryogel. Cellulose, 2018, 25, 573-582.	2.4	53
24	Foam properties and application in dyeing cotton fabrics with reactive dyes. Coloration Technology, 2014, 130, 266-272.	0.7	51
25	Facile preparation of polysaccharide-based sponges and their potential application in wound dressing. Journal of Materials Chemistry B, 2018, 6, 634-640.	2.9	50
26	Synthesis of fibrous LaFeO3 perovskite oxide for adsorption of Rhodamine B. Ecotoxicology and Environmental Safety, 2019, 168, 35-44.	2.9	50
27	<i>In Vitro</i> Digestion of Oil-in-Water Emulsions Stabilized by Regenerated Chitin. Journal of Agricultural and Food Chemistry, 2018, 66, 12344-12352.	2.4	48
28	A shape-stable phase change composite prepared from cellulose nanofiber/polypyrrole/polyethylene glycol for electric-thermal energy conversion and storage. Chemical Engineering Journal, 2020, 400, 125950.	6.6	48
29	Effect of Counterion Choice on the Stability of Cellulose Nanocrystal Pickering Emulsions. Industrial & Engineering Chemistry Research, 2018, 57, 7169-7180.	1.8	47
30	Thiol–ene click reaction on cellulose sponge and its application for oil/water separation. RSC Advances, 2017, 7, 20147-20151.	1.7	43
31	Cellulosic scaffolds doped with boron nitride nanosheets for shape-stabilized phase change composites with enhanced thermal conductivity. International Journal of Biological Macromolecules, 2020, 148, 627-634.	3.6	42
32	The preparation and antibacterial activity of polyester fabric loaded with silver nanoparticles. Textile Reseach Journal, 2013, 83, 321-326.	1.1	41
33	The flame-retardancy and anti-dripping properties of novel poly(ethylene) Tj ETQq1 1 0.784314 rgBT /Overlock 10 268-277.	Tf 50 18 2.7	7 Td (tereph 40
34	Acetone/Water Cosolvent Approach to Lignin Nanoparticles with Controllable Size and Their Applications for Pickering Emulsions. ACS Sustainable Chemistry and Engineering, 2021, 9, 5470-5480.	3.2	40
35	Multifunctional polypyrrole and rose-like silver flower-decorated E-textile with outstanding pressure/strain sensing and energy storage performance. Chemical Engineering Journal, 2022, 427, 130823.	6.6	40
36	Facile Fabrication of Robust and Stretchable Cellulose Nanofibers/Polyurethane Hybrid Aerogels. ACS Sustainable Chemistry and Engineering, 2020, 8, 8977-8985.	3.2	39

#	Article	IF	CITATIONS
37	Facile fabrication of thiol-modified cellulose sponges for adsorption of Hg2+ from aqueous solutions. Cellulose, 2018, 25, 3025-3035.	2.4	38
38	Copper-loaded nanocellulose sponge as a sustainable catalyst for regioselective hydroboration of alkynes. Carbohydrate Polymers, 2018, 191, 17-24.	5.1	35
39	A light-weight and high-efficacy antibacterial nanocellulose-based sponge via covalent immobilization of gentamicin. Carbohydrate Polymers, 2018, 200, 595-601.	5.1	35
40	Nanocellulose-mediated transparent high strength conductive hydrogel based on in-situ formed polypyrrole nanofibrils as a multimodal sensor. Carbohydrate Polymers, 2021, 273, 118600.	5.1	35
41	Smart cotton fabric screen-printed with viologen polymer: photochromic, thermochromic and ammonia sensing. Cellulose, 2020, 27, 2939-2952.	2.4	34
42	High-performance polypyrrole coated knitted cotton fabric electrodes for wearable energy storage. Organic Electronics, 2019, 74, 59-68.	1.4	33
43	Facile synthesis of cellulose derivatives based on cellulose acetoacetate. Carbohydrate Polymers, 2017, 170, 117-123.	5.1	32
44	Fabrication of Thermoresponsive Polymer-Functionalized Cellulose Sponges: Flexible Porous Materials for Stimuli-Responsive Catalytic Systems. ACS Applied Materials & Interfaces, 2018, 10, 27831-27839.	4.0	32
45	An autonomously healable, highly stretchable and cyclically compressible, wearable hydrogel as a multimodal sensor. Polymer Chemistry, 2020, 11, 1327-1336.	1.9	32
46	The fabrication of polylactide/cellulose nanocomposites with enhanced crystallization and mechanical properties. International Journal of Biological Macromolecules, 2020, 155, 1578-1588.	3.6	32
47	Antibacterial phase change microcapsules obtained with lignin as the Pickering stabilizer and the reducing agent for silver. International Journal of Biological Macromolecules, 2020, 144, 624-631.	3.6	31
48	Cellulose nanocrystals-composited poly (methyl methacrylate) encapsulated n-eicosane via a Pickering emulsion-templating approach for energy storage. Carbohydrate Polymers, 2020, 234, 115934.	5.1	31
49	Facile fabrication of carboxymethyl chitosan/paraffin coated carboxymethylated cotton fabric with asymmetric wettability for hemostatic wound dressing. Cellulose, 2020, 27, 3443-3453.	2.4	30
50	Transforming commercial regenerated cellulose yarns into multifunctional wearable electronic textiles. Journal of Materials Chemistry C, 2020, 8, 1309-1318.	2.7	29
51	High-Temperature Auto-Cross-Linking Cyclotriphosphaznene: Synthesis and Application in Flame Retardance and Antidripping Poly(ethylene terephthalate). Industrial & Engineering Chemistry Research, 2015, 54, 3788-3799.	1.8	28
52	Multi-responsive, self-healing and adhesive PVA based hydrogels induced by the ultrafast complexation of Fe ³⁺ ions. Soft Matter, 2019, 15, 7404-7411.	1.2	27
53	Oil-in-water Pickering emulsions from three plant-derived regenerated celluloses. Carbohydrate Polymers, 2019, 207, 755-763.	5.1	26
54	Lignin assisted Pickering emulsion polymerization to microencapsulate 1-tetradecanol for thermal management. International Journal of Biological Macromolecules, 2020, 146, 1-8.	3.6	26

#	Article	IF	CITATIONS
55	Asymmetric composite wound dressing with hydrophobic flexible bandage and tissue-adhesive hydrogel for joints skin wound healing. Composites Part B: Engineering, 2022, 235, 109762.	5.9	26
56	Rheology of regenerated cellulose suspension and influence of sodium alginate. International Journal of Biological Macromolecules, 2020, 148, 811-816.	3.6	25
57	Regenerated cellulose-dispersed polystyrene composites enabled via Pickering emulsion polymerization. Carbohydrate Polymers, 2019, 223, 115079.	5.1	24
58	Construction of a metallic silver nanoparticle-decorated bismuth oxybromide-based composite material as a readily recyclable photocatalyst. Journal of Cleaner Production, 2020, 246, 119007.	4.6	24
59	Enhancement in electrical conductive property of polypyrrole oated cotton fabrics using cationic surfactant. Journal of Applied Polymer Science, 2016, 133, .	1.3	23
60	Biginelli reaction on cellulose acetoacetate: a new approach for versatile cellulose derivatives. Carbohydrate Polymers, 2019, 209, 223-229.	5.1	23
61	Enamine Approach for Versatile and Reversible Functionalization on Cellulose Related Porous Sponges. ACS Sustainable Chemistry and Engineering, 2018, 6, 9028-9036.	3.2	22
62	Preparation and characterization of carboxymethylated cotton fabrics as hemostatic wound dressing. International Journal of Biological Macromolecules, 2020, 160, 18-25.	3.6	22
63	Bio-based polymer colorants from nonaqueous reactive dyeing of regenerated cellulose for plastics and textiles. Carbohydrate Polymers, 2019, 206, 734-741.	5.1	21
64	Fabrication of lignin/poly(3-hydroxybutyrate) nanocomposites with enhanced properties via a Pickering emulsion approach. International Journal of Biological Macromolecules, 2020, 165, 3078-3087.	3.6	21
65	Poly(lactic acid)/carbon nanotube composites with enhanced electrical conductivity via a two-step dispersion strategy. Composites Communications, 2022, 30, 101087.	3.3	21
66	Functionalization of cotton fabric with bismuth oxyiodide nanosheets: applications for photodegrading organic pollutants, UV shielding and self-cleaning. Cellulose, 2019, 26, 2873-2884.	2.4	20
67	The influence of synergistic effects of hexakis (4-nitrophenoxy) cyclotriphosphazene and POE-g-MA on anti-dripping and flame retardancy of PET. Journal of Industrial and Engineering Chemistry, 2013, 19, 993-999.	2.9	18
68	A novel low add-on technology of dyeing cotton fabric with reactive dyestuff. Textile Reseach Journal, 2018, 88, 1345-1355.	1.1	18
69	A waterborne bio-based polymer pigment: colored regenerated cellulose suspension from waste cotton fabrics. Cellulose, 2018, 25, 7369-7379.	2.4	18
70	Polyphosphazene microspheres modified with transition metal hydroxystannate for enhancing the flame retardancy of polyethylene terephthalate. Polymers for Advanced Technologies, 2020, 31, 1194-1207.	1.6	18
71	Synthesis of a lowâ€ŧemperature selfâ€crosslinking polyacrylate binder with a coreâ€shell structure and its application in textile pigment printing. Coloration Technology, 2018, 134, 299-307.	0.7	17
72	The combâ€like modified styreneâ€maleic anhydride copolymer dispersant for disperse dyes. Journal of Applied Polymer Science, 2019, 136, 47330.	1.3	17

#	Article	IF	CITATIONS
73	Synthetic semicrystalline cellulose oligomers as efficient Pickering emulsion stabilizers. Carbohydrate Polymers, 2021, 254, 117445.	5.1	17
74	A recyclable 3D g-C3N4 based nanocellulose aerogel composite for photodegradation of organic pollutants. Cellulose, 2021, 28, 3531-3547.	2.4	17
75	Mussel-inspired adhesive gelatin–polyacrylamide hydrogel wound dressing loaded with tetracycline hydrochloride to enhance complete skin regeneration. Soft Matter, 2022, 18, 662-674.	1.2	17
76	The flameâ€retardant properties and mechanisms of poly(ethylene terephthalate)/hexakis (paraâ€allyloxyphenoxy) cyclotriphosphazene systems. Journal of Applied Polymer Science, 2015, 132, .	1.3	16
77	Preparation and characterization of thermal protective aluminum hydroxide aerogel/PSA fabric composites. Journal of Sol-Gel Science and Technology, 2017, 82, 370-379.	1.1	16
78	Antibacterial thyme oil-loaded organo-hydrogels utilizing cellulose acetoacetate as reactive polymer emulsifier. International Journal of Biological Macromolecules, 2020, 147, 18-23.	3.6	16
79	Application of self-templated PHMA sub-microtubes in enhancing flame-retardance and anti-dripping of PET. Polymer Degradation and Stability, 2018, 154, 239-247.	2.7	15
80	Self-healing and acidochromic polyvinyl alcohol hydrogel reinforced by regenerated cellulose. Carbohydrate Polymers, 2021, 255, 117331.	5.1	15
81	A heterogeneous binary solvent system for recyclable reactive dyeing of cotton fabrics. Cellulose, 2018, 25, 7381-7392.	2.4	14
82	Synergistic effects of a novel siliconâ€containing triazine charring agent on the flameâ€retardant properties of poly(ethylene terephthalate)/hexakis (4â€phenoxy)cyclotriphosphazene composites. Polymer Composites, 2018, 39, 858-868.	2.3	13
83	Flameâ€retardant poly (ethylene terephthalate) enabled by a novel melamine polyphosphate nanowire. Polymers for Advanced Technologies, 2020, 31, 795-806.	1.6	13
84	Aggregation behaviors of thermo-responsive methylcellulose in water: A molecular dynamics simulation study. Journal of Molecular Graphics and Modelling, 2020, 97, 107554.	1.3	13
85	Thermally conductive poly(lactic acid)/boron nitride composites via regenerated cellulose assisted Pickering emulsion approach. Journal of Materials Science and Technology, 2022, 101, 146-154.	5.6	13
86	Preparation and characterization of polyphosphazene-based flame retardants with different functional groups. Polymer Degradation and Stability, 2022, 196, 109815.	2.7	13
87	Preparation of magnetic cotton fabric by surface micro-dissolution treatment. Cellulose, 2017, 24, 1099-1106.	2.4	12
88	Sag control of waterborne acrylic latex with regenerated nanocellulose suspension. Progress in Organic Coatings, 2018, 123, 146-152.	1.9	12
89	Calcium functioned carboxymethylated cotton fabric for hemostatic wound dressing. Cellulose, 2020, 27, 10139-10149.	2.4	12
90	Durable and Effective Antibacterial Cotton Fabric Collaborated with Polypropylene Tissue Mesh for Abdominal Wall Defect Repair. ACS Biomaterials Science and Engineering, 2020, 6, 3868-3877.	2.6	12

#	Article	IF	CITATIONS
91	Preparation and characterization of flameâ€retardant lamellar Mg(OH) ₂ thin films on citric acidâ€treated cotton fabrics. Surface and Interface Analysis, 2011, 43, 903-912.	0.8	11
92	Low-temperature bleaching of cotton fabric with a binuclear manganese complex of 1,4,7-trimethyl-1,4,7-triazacyclononane as catalyst for hydrogen peroxide. Coloration Technology, 2012, 128, 410-415.	0.7	11
93	Robust Fabrication of Fluorescent Cellulosic Materials via Hantzsch Reaction. Macromolecular Rapid Communications, 2021, 42, 2000496.	2.0	11
94	Toughening, highly thermostable, and flame retardant polylactic acid enabled by polyphosphazene microsphere. Journal of Applied Polymer Science, 2022, 139, 51973.	1.3	11
95	High-tensile regenerated cellulose films enabled by unexpected enhancement of cellulose dissolution in cryogenic aqueous phosphoric acid. Carbohydrate Polymers, 2022, 277, 118878.	5.1	11
96	Musselâ€inspired chitosanâ€based hydrogel sensor with <scp>pH</scp> â€responsive and adjustable adhesion, toughness and selfâ€healing capability. Polymers for Advanced Technologies, 2022, 33, 1867-1880.	1.6	11
97	Enhancing electrical conductivity and electrical stability of polypyrroleâ€coated cotton fabrics via surface microdissolution. Journal of Applied Polymer Science, 2019, 136, 47515.	1.3	10
98	Antibacterial thyme oil-loaded zwitterionic emulsion hydrogels. Journal of Materials Chemistry B, 2022, 10, 2691-2698.	2.9	10
99	Flammability properties of PI fabric coated with montmorillonite. Journal of Thermal Analysis and Calorimetry, 2013, 111, 27-33.	2.0	9
100	Effect of trisilanolphenylâ€ <scp>POSS</scp> on rheological, mechanical, and flameâ€retardant properties of poly(ethylene terephthalate)/cyclotriphosphazene systems. Journal of Applied Polymer Science, 2018, 135, 45912.	1.3	9
101	The effect of the degree of substitution on the solubility of cellulose acetoacetates in water: A molecular dynamics simulation and density functional theory study. Carbohydrate Research, 2020, 496, 108134.	1.1	9
102	Lightweight, Environmentally Friendly, and Underwater Superelastic 3D-Architectured Aerogels for Efficient Protein Separation. ACS Sustainable Chemistry and Engineering, 2021, 9, 11738-11747.	3.2	9
103	Low-temperature bleaching of cotton fabric using a copper-based catalyst for hydrogen peroxide. Coloration Technology, 2015, 131, 66-71.	0.7	8
104	Pickering emulsion process assisted construction of regenerated chitin reinforced poly (lactic acid) blends. International Journal of Biological Macromolecules, 2019, 140, 10-16.	3.6	8
105	Study of the aggregation behaviour of three primary reactive dyes via molecular dynamics simulations. Molecular Simulation, 2020, 46, 627-637.	0.9	8
106	Synthesis and application of poly (cyclotriphosphazeneâ€resveratrol) microspheres for enhancing flame retardancy of poly (ethylene terephthalate). Polymers for Advanced Technologies, 2022, 33, 658-671.	1.6	8
107	Highly transparent, self-healing and adhesive wearable ionogel as strain and temperature sensor. Polymer Chemistry, 2022, 13, 4064-4075.	1.9	8
108	Fire retardancy and durability of poly(<i>N</i> â€benzyloxycarbonylâ€3,4â€dihydroxyphenylalanine)â€montmorillonite composite film coated polyimide fabric. Journal of Applied Polymer Science, 2014, 131, .	1.3	7

#	Article	IF	CITATIONS
109	Effect of Sepiolite-Loaded Fe2O3 on Flame Retardancy of Waterborne Polyurethane. Advances in Polymer Technology, 2021, 2021, 1-10.	0.8	7
110	Modified montmorillonite and its application as a flame retardant for polyester. Journal of Applied Polymer Science, 2014, 131, .	1.3	6
111	Preparation and characterization of biodegradable poly(Ϊμ-caprolactone) self-reinforced composites and their crystallization behavior. Polymer International, 2017, 66, 1555-1563.	1.6	6
112	Dually self-reinforced Poly(ε-caprolactone) composites based on unidirectionally arranged fibers. Composites Science and Technology, 2018, 165, 331-338.	3.8	6
113	Real-time monitoring of multicomponent reactive dye adsorption on cotton fabrics by Raman spectroscopy. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2020, 230, 118051.	2.0	6
114	A facile method for fabricating color adjustable multifunctional cotton fabrics with solid solution BiOBrx11â^'x nanosheets. Cellulose, 2020, 27, 3517-3530.	2.4	6
115	Mechanistic Insights into Selective Acetaldehyde Formation from Ethanol Oxidation on Hematite Photoanodes by Operando Spectroelectrochemistry. ChemSusChem, 2022, 15, .	3.6	6
116	Study on the preparation and properties of lactic acid based copolymer. Journal of Polymer Research, 2012, 19, 1.	1.2	5
117	A study of the diffusion behaviour of reactive dyes in cellulose fibres using confocal Raman microscopy. Coloration Technology, 2020, 136, 503-511.	0.7	5
118	Preparation and characteristics of sepiolite-waterborne polyurethane composites. Journal of Polymer Engineering, 2022, 42, 66-74.	0.6	5
119	Acrylonitrile-butadiene-styrene-based composites derived from "fish-net―inspired Pickering emulsion for high-performance electromagnetic interference shielding and thermal management. Composites Communications, 2022, 30, 101085.	3.3	5
120	Effect of weak intermolecular interactions in micro/nanoscale polyphosphazenes and polyethylene terephthalate composites on flame retardancy. Polymers for Advanced Technologies, 2022, 33, 2231-2243.	1.6	5
121	The synthesis and adhesive performance of the poly(N-benzyloxycarbonyl-3,4-dihydroxyphenylalanine) derived from 3,4-dihydroxyphenylalanine. Journal of Adhesion Science and Technology, 2013, 27, 81-89.	1.4	4
122	Preparation and properties of poly(ε aprolactone) selfâ€reinforced composites based on fibers/matrix structure. Journal of Applied Polymer Science, 2017, 134, .	1.3	4
123	Nanocellulose sponges as efficient continuous flow reactors. Carbohydrate Polymers, 2019, 224, 115184.	5.1	4
124	Reductive performance of ZVI/Cu polyscale particle to decolorize reactive black 5. Microscopy Research and Technique, 2019, 82, 134-143.	1.2	4
125	Study on the effect of different dyeing systems on the interaction of multiâ€component reactive dyes by Raman spectroscopy. Coloration Technology, 2021, 137, 520-529.	0.7	4
126	Preparation of <scp>3D</scp> porous <scp>celluloseâ€chitosan</scp> hybrid gel macrospheres by alkaline urea system for enzyme immobilization. Polymers for Advanced Technologies, 2022, 33, 546-555.	1.6	4

#	Article	IF	CITATIONS
127	A novel approach for recipe prediction of fabric dyeing based on featureâ€weighted support vector regression and particle swarm optimisation. Coloration Technology, 2022, 138, 495-508.	0.7	4
128	Integrated Janus cellulosic composite with multiple thermal functions for personalized thermal management. Carbohydrate Polymers, 2022, 288, 119409.	5.1	4
129	Morphology-Controlled Synthesis of Polyphosphazene-Based Micro- and Nano-Materials and Their Application as Flame Retardants. Polymers, 2022, 14, 2072.	2.0	4
130	Fast responsive and strong swelling hydrogels based on <i>N</i> â€isopropylacrylamide with sodium acrylate. Journal of Applied Polymer Science, 2009, 112, 123-128.	1.3	3
131	Intercalated montmorillonite by cyclotriphosphazene imidazole derivative and its thermal properties used in polyester. Fire and Materials, 2017, 41, 323-338.	0.9	3
132	High strength and antiâ€freezing piezoresistive pressure sensor based on a composite gel. Polymers for Advanced Technologies, 2022, 33, 2448-2458.	1.6	3
133	Rigid and conductive lightweight regenerated cellulose/carbon nanotubes/acrylonitrile–butadiene–styrene nanocomposites constructed via a Pickering emulsion process. Journal of Applied Polymer Science, 2022, 139, 51964.	1.3	2
134	Polypyrrole nanorods coated on cellulose nanofibers by pickering emulsion as conductive medium for multimodal gel-based sensor. Cellulose, 2022, 29, 6719-6732.	2.4	2
135	Novel Assemblies of Organo-Soluble Aromatic Polyamides Containing Copper(II) Coordination Complex Units in the Main Chain. Journal of Inorganic and Organometallic Polymers and Materials, 2013, 23, 546-552.	1.9	1
136	Robust, floatable, steam generator based on the graded porous polyimide film for efficient solar desalination. Polymers for Advanced Technologies, 2021, 32, 3436-3445.	1.6	1
137	Assembled hybrid films based on sepiolite, phytic acid, polyaspartic acid and Fe ³⁺ for flame-retardant cotton fabric. Journal of Polymer Engineering, 2022, 42, 744-754.	0.6	1
138	In situ growth of CuS NPs on 3D porous cellulose macrospheres as recyclable biocatalysts for organic dye degradation. RSC Advances, 2021, 11, 36554-36563.	1.7	0