
Yulin Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5096090/publications.pdf Version: 2024-02-01

VIIIMI

#	Article	IF	CITATIONS
1	Facile Purification and Concentration of DNA Origami Structures by Ethanol Precipitation. ChemNanoMat, 2022, 8, .	2.8	4
2	Regulating the Kinetics of DNA Attachment: Construction of Defined Clusters with High DNA Density and Strong Plasmonic Coupling. ChemNanoMat, 2021, 7, 811-814.	2.8	0
3	Functionalization of Tileâ€based DNA Nanocages with Gold Nanoparticles (AuNPs) to Form AuNP Clusterâ€DNA Cage Hybrids. ChemNanoMat, 2020, 6, 1175-1178.	2.8	4
4	Trace Fe Incorporation into Ni-(oxy)hydroxide Stabilizes Ni ³⁺ Sites for Anodic Oxygen Evolution: A Double Thin-Layer Study. Langmuir, 2020, 36, 5126-5133.	3.5	18
5	Frontispiece: Stimuliâ€Responsive DNA Selfâ€Assembly: From Principles to Applications. Chemistry - A European Journal, 2019, 25, .	3.3	0
6	Area‣tep Cyclic Voltammetry for Assessing Local Electrocatalytic Activity of Gradient Materials. ChemElectroChem, 2019, 6, 5237-5241.	3.4	3
7	Baseâ€Sequenceâ€Independent Efficient Redox Switching of Selfâ€Assembled DNA Nanocages. ChemBioChem, 2019, 20, 2743-2746.	2.6	4
8	Stimuliâ€Responsive DNA Selfâ€Assembly: From Principles to Applications. Chemistry - A European Journal, 2019, 25, 9785-9798.	3.3	22
9	Rational Design and Self-Assembly of Two-Dimensional, Dodecagonal DNA Quasicrystals. Journal of the American Chemical Society, 2019, 141, 4248-4251.	13.7	54
10	Ag Ion Soldering: An Emerging Tool for Sub-nanomeric Plasmon Coupling and Beyond. Accounts of Chemical Research, 2019, 52, 3442-3454.	15.6	16
11	Universal pHâ€Responsive and Metalâ€Ionâ€Free Selfâ€Assembly of DNA Nanostructures. Angewandte Chemie - International Edition, 2018, 57, 6892-6895.	13.8	44
12	Universal pHâ€Responsive and Metalâ€Ionâ€Free Selfâ€Assembly of DNA Nanostructures. Angewandte Chemie, 2018, 130, 7008-7011.	2.0	10
13	Supramolecular Wireframe <scp>DNA</scp> Polyhedra: Assembly and Applications. Chinese Journal of Chemistry, 2017, 35, 801-810.	4.9	8
14	Regulating DNA Selfâ€assembly by DNA–Surface Interactions. ChemBioChem, 2017, 18, 2404-2407.	2.6	29
15	"Flash―preparation of strongly coupled metal nanoparticle clusters with sub-nm gaps by Ag ⁺ soldering: toward effective plasmonic tuning of solution-assembled nanomaterials. Chemical Science, 2016, 7, 5435-5440.	7.4	33
16	A Case Study of the Likes and Dislikes of DNA and RNA in Selfâ€Assembly. Angewandte Chemie - International Edition, 2015, 54, 15118-15121.	13.8	9
17	Self-Assembly of Responsive Multilayered DNA Nanocages. Journal of the American Chemical Society, 2015, 137, 1730-1733.	13.7	86
18	Overcoming the Coupling Dilemma in DNAâ€Programmable Nanoparticle Assemblies by "Ag ⁺ Soldering― Small, 2015, 11, 2247-2251.	10.0	36

Yulin Li

#	Article	IF	CITATIONS
19	Complex wireframe DNA origami nanostructures with multi-arm junction vertices. Nature Nanotechnology, 2015, 10, 779-784.	31.5	349
20	Structural Transformation: Assembly of an Otherwise Inaccessible DNA Nanocage. Angewandte Chemie - International Edition, 2015, 54, 5990-5993.	13.8	25
21	Chemoresponsive Colloidosomes via Ag ⁺ Soldering of Surface-Assembled Nanoparticle Monolayers. Langmuir, 2015, 31, 4589-4592.	3.5	14
22	Self-Assembly of Molecule-like Nanoparticle Clusters Directed by DNA Nanocages. Journal of the American Chemical Society, 2015, 137, 4320-4323.	13.7	136
23	DNA Nanocages Swallow Gold Nanoparticles (AuNPs) to Form AuNP@DNA Cage Core–Shell Structures. ACS Nano, 2014, 8, 1130-1135.	14.6	87
24	Core solution: a strategy towards gold core/non-gold shell nanoparticles bearing strict DNA-valences for programmable nanoassembly. Chemical Science, 2014, 5, 1015-1020.	7.4	18
25	Pt nanoparticles decorated with a discrete number of DNA molecules for programmable assembly of Au–Pt bimetallic superstructures. Chemical Communications, 2012, 48, 3727.	4.1	27
26	Silver nanoparticle–DNA bionanoconjugates bearing a discrete number of DNA ligands. Chemical Communications, 2012, 48, 6160.	4.1	50
27	Logical Regulations of the Aggregation/Dispersion of Gold Nanoparticles via Programmed Chemical Interactions. Langmuir, 2011, 27, 9666-9670.	3.5	8
28	Surface-initiated DNA self-assembly as an enzyme-free and nanoparticle-free strategy towards signal amplification of an electrochemical DNA sensor. Analyst, The, 2011, 136, 459-462.	3.5	7
29	Eggshell membrane as a multimodal solid state platform for generating fluorescent metal nanoclusters. Journal of Materials Chemistry, 2011, 21, 2863.	6.7	72
30	DNA-SWNT hybrid hydrogel. Chemical Communications, 2011, 47, 5545-5547.	4.1	81
31	Toward a Universal "Adhesive Nanosheet―for the Assembly of Multiple Nanoparticles Based on a Protein-Induced Reduction/Decoration of Graphene Oxide. Journal of the American Chemical Society, 2010, 132, 7279-7281.	13.7	794
32	Visual detection of sub-femtomole DNA by a gold nanoparticle seeded homogeneous reduction assay: Toward a generalized sensitivity-enhancing strategy. Biosensors and Bioelectronics, 2010, 25, 1984-1988.	10.1	40
33	Noncovalent DNA decorations of graphene oxide and reduced graphene oxide toward water-soluble metal–carbon hybrid nanostructuresviaself-assembly. Journal of Materials Chemistry, 2010, 20, 900-906.	6.7	167
34	A General Strategy Toward pH ontrolled Aggregation–Dispersion of Gold Nanoparticles and Singleâ€Walled Carbon Nanotubes. Small, 2008, 4, 326-329.	10.0	38
35	Grafting Singleâ€Walled Carbon Nanotubes with Highly Hybridizable DNA Sequences: Potential Building Blocks for DNAâ€Programmed Material Assembly. Angewandte Chemie - International Edition, 2007, 46, 7481-7484.	13.8	39
36	Boosted Productivity in Singleâ€Tileâ€Based DNA Polyhedra Assembly by Simple Cation Replacement. ChemBioChem, 0, , .	2.6	3