Faisal Khan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5095028/publications.pdf

Version: 2024-02-01

622 papers 26,856 citations

79 h-index 126 g-index

632 all docs

632 docs citations

632 times ranked

12074 citing authors

#	Article	IF	CITATIONS
1	Application of data mining to minimize fireâ€induced domino effect risks. Risk Analysis, 2023, 43, 571-589.	1.5	3
2	Offshore oil and gas development in remote harsh environments: engineering challenges and research opportunities. Safety in Extreme Environments, 2023, 5, 17-33.	1.8	5
3	Kinetic modeling of biosurfactant production by <i>Bacillus subtilis</i> N3-1P using brewery waste. Chemical Product and Process Modeling, 2022, 17, 331-339.	0.5	5
4	An integrated methodology for dynamic risk evaluation of deepwater blowouts. Journal of Loss Prevention in the Process Industries, 2022, 74, 104647.	1.7	7
5	A novel vulnerability model considering synergistic effect of fire and overpressure in chemical processing facilities. Reliability Engineering and System Safety, 2022, 217, 108081.	5.1	28
6	A dynamic domino effect risk analysis model for rail transport of hazardous material. Journal of Loss Prevention in the Process Industries, 2022, 74, 104666.	1.7	24
7	Capsizing accident scenario model for small fishing trawler. Safety Science, 2022, 145, 105500.	2.6	10
8	A Connectionist Model for Dynamic Economic Risk Analysis of Hydrocarbons Production Systems. Risk Analysis, 2022, 42, 1541-1570.	1.5	2
9	Operational subsea pipeline assessment affected by multiple defects of microbiologically influenced corrosion. Chemical Engineering Research and Design, 2022, 158, 159-171.	2.7	37
10	Myths and misconceptions of data-driven methods: Applications to process safety analysis. Computers and Chemical Engineering, 2022, 158, 107639.	2.0	10
11	Removal of copper from sulfate solutions using biochar derived from crab processing by-product. Journal of Environmental Management, 2022, 303, 114270.	3.8	9
12	Autonomous Fault Diagnosis and Root Cause Analysis for the Processing System Using One-Class SVM and NN Permutation Algorithm. Industrial & Engineering Chemistry Research, 2022, 61, 1408-1422.	1.8	29
13	Estimating of Non-Darcy Flow Coefficient in Artificial Porous Media. Energies, 2022, 15, 1197.	1.6	7
14	Resilience assessment of a subsea pipeline using dynamic Bayesian network. Journal of Pipeline Science and Engineering, 2022, 2, 100053.	2.4	36
15	A comprehensive approach to scenario-based risk management for Arctic waters. Ship Technology Research, 2022, 69, 129-157.	1.1	8
16	Analyzing operational risk for small fishing vessels considering crew effectiveness. Ocean Engineering, 2022, 249, 110512.	1.9	9
17	Review and analysis of the hydrogen production technologies from a safety perspective. International Journal of Hydrogen Energy, 2022, 47, 13990-14007.	3.8	50
18	Comparison between simulation and conventional training: Expanding the concept of social fidelity. Process Safety Progress, 2022, 41, .	0.4	5

#	Article	IF	Citations
19	Resilience assessment of offshore structures subjected to ice load considering complex dependencies. Reliability Engineering and System Safety, 2022, 222, 108421.	5.1	7
20	A review of risk-based decision-making models for microbiologically influenced corrosion (MIC) in offshore pipelines. Reliability Engineering and System Safety, 2022, 223, 108474.	5.1	37
21	A methodology for time-varying resilience quantification of an offshore natural gas pipeline. Journal of Pipeline Science and Engineering, 2022, 2, 100054.	2.4	2
22	Dynamic operational risk assessment in process safety management. Methods in Chemical Process Safety, 2022, , .	0.5	0
23	A novel methodology to develop risk-based maintenance strategies for fishing vessels. Ocean Engineering, 2022, 253, 111281.	1.9	6
24	Resilience assessment framework for fast response process systems. Chemical Engineering Research and Design, 2022, 163, 82-93.	2.7	11
25	State-of-the-art in process safety and digital system. Methods in Chemical Process Safety, 2022, , 25-59.	0.5	4
26	Statistical approaches and artificial neural networks for process monitoring. Methods in Chemical Process Safety, 2022, , .	0.5	3
27	Risk assessment in Industry 4.0. Methods in Chemical Process Safety, 2022, , .	0.5	2
28	Vulnerability assessment method for domino effects analysis in chemical clusters. Chemical Engineering Research and Design, 2022, 164, 539-554.	2.7	10
29	A dynamic human-factor risk model to analyze safety in sociotechnical systems. Chemical Engineering Research and Design, 2022, 164, 479-498.	2.7	26
30	A general method to combine environmental and life-safety consequences of Arctic ship accidents. Safety Science, 2022, 154, 105855.	2.6	10
31	Opportunities and threats to process safety in digitalized process systems—An overview. Methods in Chemical Process Safety, 2022, , .	0.5	3
32	Logic-Based Data-Driven Operational Risk Model for Augmented Downhole Petroleum Production Systems. Computers and Chemical Engineering, 2022, , 107914.	2.0	2
33	Influence of chloride and pH on the pitting mechanism of Znâ€Ni alloy coating in sodium chloride solutions. Canadian Journal of Chemical Engineering, 2021, 99, 680-694.	0.9	12
34	Review and analysis of supervised machine learning algorithms for hazardous events in drilling operations. Chemical Engineering Research and Design, 2021, 147, 367-384.	2.7	70
35	Hybrid connectionist models to assess recovery performance of low salinity water injection. Journal of Petroleum Science and Engineering, 2021, 197, 107833.	2.1	20
36	A dynamic risk model to analyze hydrogen infrastructure. International Journal of Hydrogen Energy, 2021, 46, 4626-4643.	3.8	63

#	Article	IF	CITATIONS
37	Process safety concerns in process system digitalization. Education for Chemical Engineers, 2021, 34, 33-46.	2.8	41
38	Risk-Based Cost Benefit Analysis of Offshore Resource Centre to Support Remote Offshore Operations in Harsh Environment. Reliability Engineering and System Safety, 2021, 207, 107340.	5.1	15
39	Operational risk analysis of blowout scenario in offshore drilling operation. Chemical Engineering Research and Design, 2021, 149, 422-431.	2.7	34
40	An analysis of process fault diagnosis methods from safety perspectives. Computers and Chemical Engineering, 2021, 145, 107197.	2.0	69
41	A sequence-based method for dynamic reliability assessment of MPD systems. Chemical Engineering Research and Design, 2021, 146, 927-942.	2.7	13
42	Simulation of sourâ€oxicâ€nitrite chemical environment in oil and gas facilities. Canadian Journal of Chemical Engineering, 2021, 99, .	0.9	1
43	Early Detection and Estimation of Kick in Managed Pressure Drilling. SPE Drilling and Completion, 2021, 36, 245-262.	0.9	9
44	Inherently safer design protocol for process hazard analysis. Chemical Engineering Research and Design, 2021, 149, 199-211.	2.7	24
45	Subsea Pipelines Leak-Modeling Using Computational Fluid Dynamics Approach. Journal of Pipeline Systems Engineering and Practice, 2021, 12, .	0.9	9
46	Synthesis of a Renewable, Wasteâ€Derived Nonisocyanate Polyurethane from Fish Processing Discards and Cashew Nutshellâ€Derived Amines. Macromolecular Rapid Communications, 2021, 42, e2000339.	2.0	8
47	Domino effect: Its prediction and preventionâ€"An overview. Methods in Chemical Process Safety, 2021, 5, 1-35.	0.5	6
48	Reliability Analysis of Dependent Systems using Copula Bayesian Networks: A Case Study. IOP Conference Series: Materials Science and Engineering, 2021, 1043, 032034.	0.3	0
49	Dynamic Railway Derailment Risk Analysis with Text-Data-Based Bayesian Network. Applied Sciences (Switzerland), 2021, 11, 994.	1.3	6
50	Domino effect risk management: Decision making methods. Methods in Chemical Process Safety, 2021, , 421-460.	0.5	4
51	The role of inherently safer design in process safety. Canadian Journal of Chemical Engineering, 2021, 99, 853-871.	0.9	40
52	A novel approach to reduce fire-induced domino effect risk by leveraging loading/unloading demands in chemical industrial parks. Chemical Engineering Research and Design, 2021, 146, 610-619.	2.7	22
53	Prediction of Reservoir-Kick Effect and Its Management in the Managed-Pressure-Drilling Operation. SPE Drilling and Completion, 2021, 36, 575-602.	0.9	3
54	Zn composite corrosion resistance coatings: What works and what does not work?. Journal of Loss Prevention in the Process Industries, 2021, 69, 104376.	1.7	12

#	Article	IF	CITATIONS
55	Dynamic risk analysis of marine and offshore systems suffering microbial induced stochastic degradation. Reliability Engineering and System Safety, 2021, 207, 107388.	5.1	34
56	Risk-based pipeline integrity management: A road map for the resilient pipelines. Journal of Pipeline Science and Engineering, 2021, 1, 74-87.	2.4	61
57	Microbiologically influenced corrosion (MIC) management using Bayesian inference. Ocean Engineering, 2021, 226, 108852.	1.9	45
58	Dynamic resilience assessment of the Marine LNG offloading system. Reliability Engineering and System Safety, 2021, 208, 107368.	5.1	25
59	A probabilistic model to estimate microbiologically influenced corrosion rate. Chemical Engineering Research and Design, 2021, 148, 908-926.	2.7	24
60	Predictive warning system for nonlinear process plants. Journal of Process Control, 2021, 100, 1-10.	1.7	3
61	Dynamic analysis for fire-induced domino effects in chemical process industries. Chemical Engineering Research and Design, 2021, 148, 686-697.	2.7	37
62	A food chain-based ecological risk assessment model for oil spills in the Arctic environment. Marine Pollution Bulletin, 2021, 166, 112164.	2.3	20
63	Quantitative assessment of leakage orifices within gas pipelines using a Bayesian network. Reliability Engineering and System Safety, 2021, 209, 107438.	5.1	34
64	Fuzzy Bayesian network based on an improved similarity aggregation method for risk assessment of storage tank accident. Chemical Engineering Research and Design, 2021, 149, 817-830.	2.7	65
65	Reliability assessment of marine structures considering multidimensional dependency of the variables. Ocean Engineering, 2021, 230, 109021.	1.9	13
66	A data-driven Bayesian network learning method for process fault diagnosis. Chemical Engineering Research and Design, 2021, 150, 110-122.	2.7	116
67	Risk-based fault detection and diagnosis for nonlinear and non-Gaussian process systems using R-vine copula. Chemical Engineering Research and Design, 2021, 150, 123-136.	2.7	64
68	Environmental load estimation for offshore structures considering parametric dependencies. Safety in Extreme Environments, 2021, 3, 75-101.	1.8	6
69	Risk analysis of man overboard scenario in a small fishing vessel. Ocean Engineering, 2021, 229, 108979.	1.9	11
70	Pandemic risk management using engineering safety principles. Chemical Engineering Research and Design, 2021, 150, 416-432.	2.7	11
71	Importance of human reliability in process operation: A critical analysis. Reliability Engineering and System Safety, 2021, 211, 107607.	5.1	47
72	Quantifying the partial penetration skin factor for evaluating the completion efficiency of vertical oil wells. Journal of Petroleum Exploration and Production, 2021, 11, 3031-3043.	1.2	5

#	Article	IF	CITATIONS
73	Comparison of Crushed-Zone Skin Factor for Cased and Perforated Wells Calculated with and without including a Tip-Crushed Zone Effect. Geofluids, 2021, 2021, 1-13.	0.3	6
74	Dynamic risk modeling of complex hydrocarbon production systems. Chemical Engineering Research and Design, 2021, 151, 71-84.	2.7	30
75	Application of bow tie analysis and inherently safer design to the novel coronavirus hazard. Chemical Engineering Research and Design, 2021, 152, 701-718.	2.7	10
76	Consequence modelling for Arctic ship evacuations using expert knowledge. Marine Policy, 2021, 130, 104582.	1.5	8
77	Probabilistic fatigue failure assessment of free spanning subsea pipeline using dynamic Bayesian network. Ocean Engineering, 2021, 234, 109323.	1.9	36
78	A data-driven corrosion prediction model to support digitization of subsea operations. Chemical Engineering Research and Design, 2021, 153, 413-421.	2.7	47
79	A novel fuzzy dynamic Bayesian network for dynamic risk assessment and uncertainty propagation quantification in uncertainty environment. Safety Science, 2021, 141, 105285.	2.6	52
80	Review of hydrogen safety during storage, transmission, and applications processes. Journal of Loss Prevention in the Process Industries, 2021, 72, 104569.	1.7	153
81	Recent development in electrocatalysts for hydrogen production through water electrolysis. International Journal of Hydrogen Energy, 2021, 46, 32284-32317.	3.8	236
82	A New Evaluation of Skin Factor in Inclined Wells with Anisotropic Permeability. Energies, 2021, 14, 5585.	1.6	2
83	Cross-country pipeline inspection data analysis and testing of probabilistic degradation models. Journal of Pipeline Science and Engineering, 2021, 1, 308-320.	2.4	13
84	An Active Learning Polynomial Chaos Kriging metamodel for reliability assessment of marine structures. Ocean Engineering, 2021, 235, 109399.	1.9	8
85	Dynamic failure probability analysis of urban gas pipeline network. Journal of Loss Prevention in the Process Industries, 2021, 72, 104552.	1.7	15
86	Carbon Quantum Dot-Incorporated Chitosan Hydrogel for Selective Sensing of Hg ²⁺ lons: Synthesis, Characterization, and Density Functional Theory Calculation. ACS Omega, 2021, 6, 23504-23514.	1.6	26
87	Data-driven operational failure likelihood model for microbiologically influenced corrosion. Chemical Engineering Research and Design, 2021, 153, 472-485.	2.7	17
88	Risk-based fault prediction of chemical processes using operable adaptive sparse identification of systems (OASIS). Computers and Chemical Engineering, 2021, 152, 107378.	2.0	36
89	Risk assessment of offshore fire accidents caused by subsea gas release. Applied Ocean Research, 2021, 115, 102828.	1.8	16
90	A deep learning model for process fault prognosis. Chemical Engineering Research and Design, 2021, 154, 467-479.	2.7	80

#	Article	IF	Citations
91	Modeling of thermal runaway propagation of NMC battery packs after fast charging operation. Chemical Engineering Research and Design, 2021, 154, 104-117.	2.7	40
92	Corrosion risk assessment using adaptive bow-tie (ABT) analysis. Reliability Engineering and System Safety, 2021, 214, 107731.	5.1	34
93	Combining porosity and resistivity logs for pore pressure prediction. Journal of Petroleum Science and Engineering, 2021, 205, 108819.	2.1	10
94	Offshore system safety and reliability considering microbial influenced multiple failure modes and their interdependencies. Reliability Engineering and System Safety, 2021, 215, 107862.	5.1	36
95	A Review of Risk Analysis Research for the Operations of Autonomous Underwater Vehicles. Reliability Engineering and System Safety, 2021, 216, 108011.	5.1	35
96	Domino effect assessment in the framework of industry 4.0. Methods in Chemical Process Safety, 2021, 5, 495-517.	0.5	2
97	Application of Bayesian network to domino effect assessment., 2021,, 49-71.		1
98	OASIS-P: Operable Adaptive Sparse Identification of Systems for fault Prognosis of chemical processes. Journal of Process Control, 2021, 107, 114-126.	1.7	25
99	Corrosion behavior of aluminium alloys 2024 and 7075 under simulated marine environment. Safety in Extreme Environments, 2021, 3, 237-251.	1.8	2
100	A knowledge elicitation study to inform the development of a consequence model for Arctic ship evacuations: Qualitative and quantitative data. Data in Brief, 2021, 39, 107612.	0.5	0
101	Identifying route selection strategies in offshore emergency situations using decision trees. Reliability Engineering and System Safety, 2020, 194, 106179.	5.1	22
102	Dynamic risk assessment of reservoir production using data-driven probabilistic approach. Journal of Petroleum Science and Engineering, 2020, 184, 106486.	2.1	21
103	A conditional dependence-based marine logistics support risk model. Reliability Engineering and System Safety, 2020, 193, 106623.	5.1	18
104	Quantitative risk assessment and dynamic accident modeling of TENORM occupational exposure in the oil and gas industry using SMART approach., 2020,, 125-157.		0
105	An overview of operational and occupational safety in onshore and offshore oil and gas extraction and production processes., 2020,, 1-49.		0
106	Management of nuclear radioactive materials produced with oil and gas extraction and production. , 2020, , 159-196.		1
107	Quantitative fire risk assessment of cotton storage and a criticality analysis of risk control strategies. Fire and Materials, 2020, 44, 165-179.	0.9	18
108	A time-dependent probabilistic model for fire accident analysis. Fire Safety Journal, 2020, 111, 102891.	1.4	25

#	Article	IF	Citations
109	Bayesian Stochastic Petri Nets (BSPN) - A new modelling tool for dynamic safety and reliability analysis. Reliability Engineering and System Safety, 2020, 193, 106587.	5.1	60
110	Integration of process safety in equipment design: A framework for academic learning activity. Education for Chemical Engineers, 2020, 30, 32-39.	2.8	7
111	Fault detection and diagnosis in process system using artificial intelligence-based cognitive technique. Computers and Chemical Engineering, 2020, 134, 106697.	2.0	53
112	Process Safety Assessment Considering Multivariate Non-linear Dependence Among Process Variables. Chemical Engineering Research and Design, 2020, 135, 70-80.	2.7	23
113	Assessing the risk of potential oil spills in the Arctic due to shipping. , 2020, , 179-193.		4
114	A hybrid human reliability assessment technique for the maintenance operations of marine and offshore systems. Process Safety Progress, 2020, 39, e12118.	0.4	25
115	An explorative object-oriented Bayesian network model for oil spill response in the Arctic Ocean. Safety in Extreme Environments, 2020, 2, 3-14.	1.8	14
116	A CAST-based causal analysis of the catastrophic underground pipeline gas explosion in Taiwan. Engineering Failure Analysis, 2020, 108, 104343.	1.8	23
117	Modeling impacts of combustion products on humans in complex processing facilities. Process Safety Progress, 2020, 39, e12114.	0.4	4
118	Logicâ€based probabilistic network model to detect and track faults in a process system. Process Safety Progress, 2020, 39, e12110.	0.4	2
119	An integrated dynamic failure assessment model for offshore components under microbiologically influenced corrosion. Ocean Engineering, 2020, 218, 108082.	1.9	29
120	Dataset for estimating occurrence probability of causations for plugged, abandoned and decommissioned oil and gas wells. Data in Brief, 2020, 31, 105988.	0.5	0
121	How can process safety and a risk management approach guide pandemic risk management?. Journal of Loss Prevention in the Process Industries, 2020, 68, 104310.	1.7	17
122	Rare event risk analysis $\hat{a} \in \text{``application to iceberg collision.}$ Journal of Loss Prevention in the Process Industries, 2020, 66, 104199.	1.7	10
123	Gamma ray log generation from drilling parameters using deep learning. Journal of Petroleum Science and Engineering, 2020, 195, 107906.	2.1	21
124	Assessment of cross-reactivity in a tailor-made molecularly imprinted polymer for phenolic compounds using four adsorption isotherm models. Journal of Chromatography A, 2020, 1629, 461463.	1.8	11
125	Editorial: SI on reliability and safety in offshore and marine engineering. Journal of Loss Prevention in the Process Industries, 2020, 67, 104255.	1.7	1
126	Inherently safer design principles in risk management. Methods in Chemical Process Safety, 2020, 4, 379-440.	0.5	7

#	Article	IF	CITATIONS
127	Dynamic risk analysis—Fundamentals. Methods in Chemical Process Safety, 2020, , 35-60.	0.5	4
128	Data-driven early warning model for screenout scenarios in shale gas fracturing operation. Computers and Chemical Engineering, 2020, 143, 107116.	2.0	13
129	Safety analysis of instantaneous release of compressed natural gas from a cylinder. Journal of Loss Prevention in the Process Industries, 2020, 68, 104284.	1.7	4
130	Model-based information fusion investigation on fault isolation of subsea systems considering the interaction among subsystems and sensors. Journal of Loss Prevention in the Process Industries, 2020, 67, 104267.	1.7	6
131	Risk analysis of Chongqing urban rail transit network. Journal of Loss Prevention in the Process Industries, 2020, 66, 104182.	1.7	5
132	Data-driven Bayesian network model for early kick detection in industrial drilling process. Chemical Engineering Research and Design, 2020, 138, 130-138.	2.7	44
133	Human reliability assessment for complex physical operations in harsh operating conditions. Chemical Engineering Research and Design, 2020, 140, 1-13.	2.7	30
134	Could pool fire alone cause a domino effect?. Reliability Engineering and System Safety, 2020, 202, 106976.	5.1	30
135	A Dynamic Bayesian Network model for ship-ice collision risk in the Arctic waters. Safety Science, 2020, 130, 104858.	2.6	101
136	Improved DEMATEL methodology for effective safety management decision-making. Safety Science, 2020, 127, 104705.	2.6	208
137	Emergency preparedness for management of main propulsion engine failure on a bulker during harsh weather at sea. Safety in Extreme Environments, 2020, 2, 103-111.	1.8	1
138	Investigating Vapour Cloud Explosion Dynamic Fatality Risk on Offshore Platforms by Using a Grid-Based Framework. Processes, 2020, 8, 685.	1.3	3
139	Safety and integrity management of operations in harsh environments. Safety in Extreme Environments, 2020, 2, 1-2.	1.8	5
140	A novel approach for domino effects modeling and risk analysis based on synergistic effect and accident evidence. Reliability Engineering and System Safety, 2020, 203, 107109.	5.1	34
141	Electrochemical analysis of an electrodeposited Zn-Ni alloy films contained EDTA stable baths in 3.5†wt% NaCl solutions. Materials Today: Proceedings, 2020, 28, 532-537.	0.9	11
142	Corrosion behaviour of Zn-Ni alloy and Zn-Ni-nano-TiO2 composite coatings electrodeposited from ammonium citrate baths. Chemical Engineering Research and Design, 2020, 141, 366-379.	2.7	29
143	Risk assessment of Arctic aquatic species using ecotoxicological biomarkers and Bayesian network. Marine Pollution Bulletin, 2020, 156, 111212.	2.3	10
144	Precautionary Principle (PP) versus As Low As Reasonably Practicable (ALARP): Which one to use and when. Chemical Engineering Research and Design, 2020, 137, 158-168.	2.7	17

#	Article	IF	CITATIONS
145	A variable mosquito flying optimizationâ€based hybrid artificial neural network model for the alarm tuning of process fault detection systems. Process Safety Progress, 2020, 39, e12122.	0.4	13
146	Methodological improvements in the risk analysis of an urban hydrogen fueling station. Journal of Cleaner Production, 2020, 257, 120545.	4.6	31
147	Real-time leak detection using an infrared camera and Faster R-CNN technique. Computers and Chemical Engineering, 2020, 135, 106780.	2.0	47
148	Monitoring and modeling of environmental load considering dependence and its impact on the failure probability. Ocean Engineering, 2020, 199, 107008.	1.9	7
149	A simple yet robust resilience assessment metrics. Reliability Engineering and System Safety, 2020, 197, 106810.	5.1	61
150	Integration of Resilience and FRAM for Safety Management. ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering, 2020, 6, .	1.1	10
151	Risk-based safety measure allocation to prevent and mitigate storage fire hazards. Chemical Engineering Research and Design, 2020, 135, 282-293.	2.7	55
152	Comparison of Four Adsorption Isotherm Models for Characterizing Molecular Recognition of Individual Phenolic Compounds in Porous Tailor-Made Molecularly Imprinted Polymer Films. ACS Applied Materials & Diterfaces, 2020, 12, 11998-12009.	4.0	69
153	A Framework for Integrating Life-Safety and Environmental Consequences into Conventional Arctic Shipping Risk Models. Applied Sciences (Switzerland), 2020, 10, 2937.	1.3	14
154	Conceptual development of an offshore resource centre in support of remote harsh environment operations. Ocean Engineering, 2020, 203, 107236.	1.9	8
155	Supervised data-driven approach to early kick detection during drilling operation. Journal of Petroleum Science and Engineering, 2020, 192, 107324.	2.1	34
156	Ecological Risk Assessment of Oil Spills in Iceâ€Covered Waters: A Surface Slick Model Coupled with a Foodâ€Web Bioaccumulation Model. Integrated Environmental Assessment and Management, 2020, 16, 729-744.	1.6	3
157	Data-driven model for shear wave transit time prediction for formation evaluation. Journal of Petroleum Exploration and Production, 2020, 10, 1429-1447.	1.2	17
158	Operational safety assessment of offshore pipeline with multiple MIC defects. Computers and Chemical Engineering, 2020, 138, 106819.	2.0	29
159	Stochastic explosion risk analysis of hydrogen production facilities. International Journal of Hydrogen Energy, 2020, 45, 13535-13550.	3.8	31
160	A novel dataâ€driven methodology for fault detection and dynamic risk assessment. Canadian Journal of Chemical Engineering, 2020, 98, 2397-2416.	0.9	46
161	Dynamic ecological risk modelling of hydrocarbon release scenarios in Arctic waters. Marine Pollution Bulletin, 2020, 153, 111001.	2.3	30
162	Advanced methods of risk assessment and management: An overview. Methods in Chemical Process Safety, 2020, , 1-34.	0.5	17

#	Article	IF	CITATIONS
163	PC-SAFT/UNIQUAC model assesses formation condition of methane hydrate in the presence of imidazolium-based ionic liquid systems. Fuel, 2020, 266, 116757.	3.4	13
164	A hybrid intelligent model for reservoir production and associated dynamic risks. Journal of Natural Gas Science and Engineering, 2020, 83, 103512.	2.1	13
165	Combining uncertainty reasoning and deterministic modeling for risk analysis of fire-induced domino effects. Safety Science, 2020, 129, 104802.	2.6	33
166	A Probabilistic Risk Assessment of Offshore Flaring Systems Using Bayesian Network. Springer Transactions in Civil and Environmental Engineering, 2020, , 121-131.	0.3	2
167	Integrated risk management of hazardous processing facilities. Process Safety Progress, 2019, 38, 42-51.	0.4	15
168	Modeling and simulation of offshore personnel during emergency situations. Safety Science, 2019, 111, 144-153.	2.6	16
169	Optimization of biosurfactant production by <i>Bacillus Subtilis</i> N3-1P using the brewery waste as the carbon source. Environmental Technology (United Kingdom), 2019, 40, 3371-3380.	1.2	39
170	Auxiliary codes for fault prognosis of Tennessee Eastman process using a hybrid model (CPL1.0). SoftwareX, 2019, 10, 100309.	1.2	2
171	Methodology to analyse LNG spill on steel structure in congested marine offshore facility. Journal of Loss Prevention in the Process Industries, 2019, 62, 103936.	1.7	12
172	Risk analysis of well blowout scenarios during managed pressure drilling operation. Journal of Petroleum Science and Engineering, 2019, 182, 106296.	2.1	23
173	Accidental release of Liquefied Natural Gas in a processing facility: Effect of equipment congestion level on dispersion behaviour of the flammable vapour. Journal of Loss Prevention in the Process Industries, 2019, 61, 237-248.	1.7	29
174	Operational failure model for semi-submersible mobile units in harsh environments. Ocean Engineering, 2019, 191, 106332.	1.9	4
175	Numerical analysis of performances of passive fire protections in processing facilities. Journal of Loss Prevention in the Process Industries, 2019, 62, 103970.	1.7	17
176	Iron and aluminum powder explosibility in 20-L and 1- <mml:math altimg="si1.svg" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msup><mml:mrow><mml:mtext>m</mml:mtext></mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml< td=""><td>. 1.7 -≺mml:mr</td><td>1>30 1>3</td></mml<></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:msup></mml:mrow></mml:math>	. 1.7 -≺mml:mr	1>30 1>3
177	A bibliometric analysis of process system failure and reliability literature. Engineering Failure Analysis, 2019, 106, 104152.	1.8	19
178	Niacin, lycopodium and polyethylene powder explosibility in 20-L and 1-m3 test chambers. Journal of Loss Prevention in the Process Industries, 2019, 62, 103937.	1.7	15
179	Robust Process Monitoring Methodology for Detection and Diagnosis of Unobservable Faults. Industrial & Engineering Chemistry Research, 2019, 58, 19149-19165.	1.8	38
180	Dynamic risk-based inspection methodology. Journal of Loss Prevention in the Process Industries, 2019, 62, 103974.	1.7	22

#	Article	IF	Citations
181	Hierarchical Bayesian model for failure analysis of offshore wells during decommissioning and abandonment processes. Chemical Engineering Research and Design, 2019, 131, 307-319.	2.7	18
182	Review: Removal of Thiosalt/Sulfate from Mining Effluents by Adsorption and Ion Exchange. Mineral Processing and Extractive Metallurgy Review, 2019, 40, 79-86.	2.6	9
183	Copula-based Bayesian network model for process system risk assessment. Chemical Engineering Research and Design, 2019, 123, 317-326.	2.7	56
184	Development of risk model for marine logistics support to offshore oil and gas operations in remote and harsh environments. Ocean Engineering, 2019, 174, 125-134.	1.9	30
185	A decision support tool for bi-objective risk-based maintenance scheduling of an LNG gas sweetening unit. Journal of Quality in Maintenance Engineering, 2019, 25, 65-89.	1.0	18
186	Process Fault Prognosis Using Hidden Markov Model–Bayesian Networks Hybrid Model. Industrial & Lamp; Engineering Chemistry Research, 2019, 58, 12041-12053.	1.8	31
187	Role of particle diameter in the lower flammability limits of hybrid mixtures containing coal dust and methane gas. Journal of Loss Prevention in the Process Industries, 2019, 61, 206-212.	1.7	10
188	Analysis on accident-causing factors of urban buried gas pipeline network by combining DEMATEL, ISM and BN methods. Journal of Loss Prevention in the Process Industries, 2019, 61, 49-57.	1.7	77
189	Optimization of zincâ€nickel film electrodeposition for better corrosion resistant characteristics. Canadian Journal of Chemical Engineering, 2019, 97, 2426-2439.	0.9	19
190	Artificial bee colony Based Bayesian Regularization Artificial Neural Network approach to model transient flammable cloud dispersion in congested area. Chemical Engineering Research and Design, 2019, 128, 121-127.	2.7	22
191	Dynamic risk management of assets susceptible to pitting corrosion. Corrosion Engineering Science and Technology, 2019, 54, 463-475.	0.7	3
192	A cellular automation model for convoy traffic in Arctic waters. Cold Regions Science and Technology, 2019, 164, 102783.	1.6	19
193	Modelling an integrated impact of fire, explosion and combustion products during transitional events caused by an accidental release of LNG. Chemical Engineering Research and Design, 2019, 128, 259-272.	2.7	81
194	Using Simulator Data to Facilitate Human Reliability Analysis. Journal of Offshore Mechanics and Arctic Engineering, $2019,141,$	0.6	6
195	Simultaneous Estimation of Hidden State and Unknown Input Using Expectation Maximization Algorithm. Industrial & Engineering Chemistry Research, 2019, 58, 11553-11565.	1.8	1
196	Arctic marine fish â€~biotransformation toxicity' model for ecological risk assessment. Marine Pollution Bulletin, 2019, 142, 408-418.	2.3	14
197	A bibliometric review of process safety and risk analysis. Chemical Engineering Research and Design, 2019, 126, 366-381.	2.7	111
198	FSEM: An approach to model contribution of synergistic effect of fires for domino effects. Reliability Engineering and System Safety, 2019, 189, 271-278.	5.1	45

#	Article	IF	CITATIONS
199	Modeling and Testing of Temporal Dependency in the Failure of a Process System. Industrial & Engineering Chemistry Research, 2019, 58, 8162-8171.	1.8	12
200	Dynamic risk assessment of subsea pipelines leak using precursor data. Ocean Engineering, 2019, 178, 156-169.	1.9	67
201	Dynamic process fault detection and diagnosis based on a combined approach of hidden Markov and Bayesian network model. Chemical Engineering Science, 2019, 201, 82-96.	1.9	85
202	Dynamic domino effect risk assessment using Petri-nets. Chemical Engineering Research and Design, 2019, 124, 308-316.	2.7	76
203	Small scale experiment study on burning characteristics for in-situ burning of crude oil on open water. Journal of Loss Prevention in the Process Industries, 2019, 60, 46-52.	1.7	27
204	Safety analysis of plugging and abandonment of oil and gas wells in uncertain conditions with limited data. Reliability Engineering and System Safety, 2019, 188, 133-141.	5.1	25
205	Human-Like Sequential Learning of Escape Routes for Virtual Reality Agents. Fire Technology, 2019, 55, 1057-1083.	1.5	9
206	Dynamic data driven sonic well log model for formation evaluation. Journal of Petroleum Science and Engineering, 2019, 175, 1049-1062.	2.1	22
207	Resilience modeling of engineering systems using dynamic object-oriented Bayesian network approach. Computers and Industrial Engineering, 2019, 130, 108-118.	3.4	59
208	Situation awareness modeling for emergency management on offshore platforms. Human-centric Computing and Information Sciences, 2019, 9, .	6.1	11
209	On the realization of the recognition-primed decision model for artificial agents. Human-centric Computing and Information Sciences, 2019, 9, .	6.1	7
210	An Insurance Model for Risk Management of Process Facilities. Risk Analysis, 2019, 39, 713-728.	1.5	8
211	Experimental investigation of gas kick effects on dynamic drilling parameters. Journal of Petroleum Exploration and Production, 2019, 9, 605-616.	1.2	11
212	Nonlinear model predictive control of a Hammerstein Weiner model based experimental managed pressure drilling setup. ISA Transactions, 2019, 88, 225-232.	3.1	25
213	An ontology-based methodology for hazard identification and causation analysis. Chemical Engineering Research and Design, 2019, 123, 87-98.	2.7	46
214	A hybrid model for human factor analysis in process accidents: FBN-HFACS. Journal of Loss Prevention in the Process Industries, 2019, 57, 142-155.	1.7	135
215	Nonlinear model predictive control of gas kick in a managed pressure drilling system. Journal of Petroleum Science and Engineering, 2019, 174, 1223-1235.	2.1	17
216	Operational risk assessment model for marine vessels. Reliability Engineering and System Safety, 2019, 185, 348-361.	5.1	43

#	Article	IF	CITATIONS
217	A predictive model to estimate ice accumulation on ship and offshore rig. Ocean Engineering, 2019, 173, 68-76.	1.9	6
218	Analysis of underwater gas release and dispersion behavior to assess subsea safety risk. Journal of Hazardous Materials, 2019, 367, 676-685.	6.5	30
219	Fault detection and pathway analysis using a dynamic Bayesian network. Chemical Engineering Science, 2019, 195, 777-790.	1.9	99
220	Validating Human Behavior Representation Model of General Personnel During Offshore Emergency Situations. Fire Technology, 2019, 55, 643-665.	1.5	6
221	Application of Bayesian Regularization Artificial Neural Network in explosion risk analysis of fixed offshore platform. Journal of Loss Prevention in the Process Industries, 2019, 57, 131-141.	1.7	52
222	Predictive Alarm Generation for Chemical Processes with Unknown Disturbance. Canadian Journal of Chemical Engineering, 2019, 97, 1459-1474.	0.9	4
223	Probabilistic assessment of integrated safety and security related abnormal events: a case of chemical plants. Safety Science, 2019, 113, 115-125.	2.6	29
224	Risk Analysis of Oilfield Gathering Station. Process Safety Progress, 2019, 38, 71-77.	0.4	6
225	Data Analysis to Evaluate Reliability of a Main Engine. TransNav, 2019, 13, 403-407.	0.3	6
226	Reliability Assessment of a Main Propulsion Engine Fuel Oil System- What are the Failure-prone Components?. TransNav, 2019, 13, 415-420.	0.3	5
227	Dynamic Risk Analysis Using Imprecise and Incomplete Information. ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part B: Mechanical Engineering, 2019, 5, .	0.7	1
228	An integrated approach for dynamic economic risk assessment of process systems. Chemical Engineering Research and Design, 2018, 116, 312-323.	2.7	30
229	Multi-objective optimization of simultaneous saccharification and fermentation for cellulosic ethanol production. Renewable Energy, 2018, 125, 100-107.	4.3	14
230	Risk-Based Domino Effect Analysis for Fire and Explosion Accidents Considering Uncertainty in Processing Facilities. Industrial & Engineering Chemistry Research, 2018, 57, 3990-4006.	1.8	39
231	Data-driven dynamic risk analysis of offshore drilling operations. Journal of Petroleum Science and Engineering, 2018, 165, 444-452.	2.1	49
232	Reliability assessment of marine floating structures using Bayesian network. Applied Ocean Research, 2018, 76, 51-60.	1.8	54
233	A numerical fire simulation approach for effectiveness analysis of fire safety measures in floating liquefied natural gas facilities. Ocean Engineering, 2018, 157, 219-233.	1.9	22
234	Review and analysis of fire and explosion accidents in maritime transportation. Ocean Engineering, 2018, 158, 350-366.	1.9	113

#	Article	IF	Citations
235	Bibliometric Analysis of Microbiologically Influenced Corrosion (MIC) of Oil and Gas Engineering Systems. Corrosion, 2018, 74, 468-486.	0.5	26
236	Resilience Analysis of a Remote Offshore Oil and Gas Facility for a Potential Hydrocarbon Release. Risk Analysis, 2018, 38, 1601-1617.	1.5	28
237	Kick control reliability analysis of managed pressure drilling operation. Journal of Loss Prevention in the Process Industries, 2018, 52, 7-20.	1.7	55
238	A Numerical and Experimental Study of Kick Dynamics at Downhole. ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part B: Mechanical Engineering, 2018, 4, .	0.7	1
239	Failure analysis of the offshore process component considering causation dependence. Chemical Engineering Research and Design, 2018, 113, 220-232.	2.7	43
240	Human error assessment during maintenance operations of marine systems – What are the effective environmental factors?. Safety Science, 2018, 107, 85-98.	2.6	47
241	International trade and the transmission of shocks: The case of ASEAN-4 and NIE-4 economies. Economic Modelling, 2018, 72, 109-121.	1.8	16
242	A robust risk assessment methodology for safety analysis of marine structures under storm conditions. Ocean Engineering, 2018, 156, 167-178.	1.9	29
243	Dynamic modeling of TENORM exposure risk during drilling and production. Journal of Petroleum Exploration and Production, 2018, 8, 175-188.	1.2	6
244	Human Error Probability Assessment During Maintenance Activities of Marine Systems. Safety and Health at Work, 2018, 9, 42-52.	0.3	79
245	The use of a virtual environment in managing risks associated with human responses in emergency situations on offshore installations. Ocean Engineering, 2018, 147, 621-628.	1.9	11
246	An operational risk analysis tool to analyze marine transportation in Arctic waters. Reliability Engineering and System Safety, 2018, 169, 485-502.	5.1	126
247	Safety assessment of natural gas purification plant. Chemical Engineering Research and Design, 2018, 113, 459-466.	2.7	15
248	Learning process safety principles through practice. Process Safety Progress, 2018, 37, 347-354.	0.4	3
249	A novel process economics risk model applied to biodiesel production system. Renewable Energy, 2018, 118, 615-626.	4.3	20
250	Incorporating individual differences in human reliability analysis: An extension to the virtual experimental technique. Safety Science, 2018, 107, 216-223.	2.6	21
251	Dynamic Blowout Risk Analysis Using Loss Functions. Risk Analysis, 2018, 38, 255-271.	1.5	16
252	Using Simulator Data to Facilitate Human Reliability Analysis in Offshore Emergency Situations. , 2018, , .		2

#	Article	IF	Citations
253	The impact of nature on chemical industrial facilities: Dealing with challenges for creating resilient chemical industrial parks. Journal of Loss Prevention in the Process Industries, 2018, 56, 378-385.	1.7	42
254	Chemical safety board investigation reports and the hierarchy of controls: Round 2. Process Safety Progress, 2018, 37, 459-466.	0.4	15
255	An ecological risk assessment model for Arctic oil spills from a subsea pipeline. Marine Pollution Bulletin, 2018, 135, 1117-1127.	2.3	55
256	Integrated offshore power operation resilience assessment using Object Oriented Bayesian network. Ocean Engineering, 2018, 167, 257-266.	1.9	25
257	Lower flammability limits of hybrid mixtures containing 10 micron coal dust particles and methane gas. Chemical Engineering Research and Design, 2018, 120, 215-226.	2.7	26
258	Review and analysis of microbiologically influenced corrosion: the chemical environment in oil and gas facilities. Corrosion Engineering Science and Technology, 2018, 53, 549-563.	0.7	28
259	Security assessment of process facilities – Intrusion modeling. Chemical Engineering Research and Design, 2018, 117, 639-650.	2.7	23
260	Development of inherent safety benefits index to analyse the impact of inherent safety implementation. Chemical Engineering Research and Design, 2018, 117, 454-472.	2.7	37
261	Process system fault detection and diagnosis using a hybrid technique. Chemical Engineering Science, 2018, 189, 191-211.	1.9	110
262	Data driven model for sonic well log prediction. Journal of Petroleum Science and Engineering, 2018, 170, 1022-1037.	2.1	61
263	Distributed X-ray photon correlation spectroscopy data reduction using Hadoop <i>MapReduce</i> Journal of Synchrotron Radiation, 2018, 25, 1135-1143.	1.0	17
264	Risk assessment of process system considering dependencies. Journal of Loss Prevention in the Process Industries, 2018, 55, 204-212.	1.7	16
265	A hierarchical Bayesian approach to modelling fate and transport of oil released from subsea pipelines. Chemical Engineering Research and Design, 2018, 118, 307-315.	2.7	35
266	Static Young's modulus model prediction for formation evaluation. Journal of Petroleum Science and Engineering, 2018, 171, 394-402.	2.1	21
267	A Bibliometric Review and Analysis of Data-Driven Fault Detection and Diagnosis Methods for Process Systems. Industrial & Engineering Chemistry Research, 2018, 57, 10719-10735.	1.8	111
268	Dynamic risk assessment of escape and evacuation on offshore installations in a harsh environment. Applied Ocean Research, 2018, 79, 1-6.	1.8	23
269	Marine transportation risk assessment using Bayesian Network: Application to Arctic waters. Ocean Engineering, 2018, 159, 422-436.	1.9	164
270	Overpressure prediction using the hydro-rotary specific energy concept. Journal of Natural Gas Science and Engineering, 2018, 55, 243-253.	2.1	34

#	Article	IF	CITATIONS
271	Electrochemical behaviour and analysis of Zn and Zn–Ni alloy anti-corrosive coatings deposited from citrate baths. RSC Advances, 2018, 8, 28861-28873.	1.7	48
272	Bowtie Analysis without Expert Acquisition for Safety Effect Assessments of Cooperative Intelligent Transport Systems. ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering, 2018, 4, 04018036.	1.1	1
273	A new method to study the performance of safety alarm system in process operations. Journal of Loss Prevention in the Process Industries, 2018, 56, 104-118.	1.7	8
274	Model for microbiologically influenced corrosion potential assessment for the oil and gas industry. Corrosion Engineering Science and Technology, 2018, 53, 378-392.	0.7	40
275	Overview of Marine and Offshore Safety. Methods in Chemical Process Safety, 2018, 2, 1-97.	0.5	13
276	Dynamic availability assessment of safety critical systems using a dynamic Bayesian network. Reliability Engineering and System Safety, 2018, 178, 108-117.	5.1	99
277	Using the FRAM to Understand Arctic Ship Navigation: Assessing Work Processes During the Exxon Valdez Grounding. TransNav, 2018, 12, 447-457.	0.3	9
278	A bibliometric analysis of peer-reviewed publications on domino effects in the process industry. Journal of Loss Prevention in the Process Industries, 2017, 49, 103-110.	1.7	68
279	Dynamic Failure Analysis of Process Systems Using Principal Component Analysis and Bayesian Network. Industrial & Engineering Chemistry Research, 2017, 56, 2094-2106.	1.8	40
280	Probabilistic Modeling of Pitting Corrosion in Insulated Components Operating in Offshore Facilities. ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part B: Mechanical Engineering, 2017, 3, .	0.7	3
281	Simplified electrochemical potential noise method to predict corrosion and corrosion rate. Journal of Loss Prevention in the Process Industries, 2017, 47, 72-84.	1.7	18
282	Arctic shipping accident scenario analysis using Bayesian Network approach. Ocean Engineering, 2017, 133, 224-230.	1.9	134
283	Accelerated pitting corrosion test of 304 stainless steel using ASTM G48; Experimental investigation and concomitant challenges. Journal of Loss Prevention in the Process Industries, 2017, 47, 10-21.	1.7	21
284	A probabilistic ecological risk model for Arctic marine oil spills. Journal of Environmental Chemical Engineering, 2017, 5, 1494-1503.	3.3	28
285	Integration of interpretive structural modelling with Bayesian network for biodiesel performance analysis. Renewable Energy, 2017, 107, 194-203.	4.3	45
286	A Flexible Hierarchical Bayesian Modeling Technique for Risk Analysis of Major Accidents. Risk Analysis, 2017, 37, 1668-1682.	1.5	51
287	Predictive Abnormal Events Analysis Using Continuous Bayesian Network. ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part B: Mechanical Engineering, 2017, 3, .	0.7	1
288	Root Cause Diagnosis of Process Fault Using KPCA and Bayesian Network. Industrial & Engineering Chemistry Research, 2017, 56, 2054-2070.	1.8	104

#	Article	IF	Citations
289	Revised burst model for pipeline integrity assessment. Engineering Failure Analysis, 2017, 80, 24-38.	1.8	18
290	Accident risk-based life cycle assessment methodology for green and safe fuel selection. Chemical Engineering Research and Design, 2017, 109, 268-287.	2.7	14
291	Improved latent variable models for nonlinear and dynamic process monitoring. Chemical Engineering Science, 2017, 168, 325-338.	1.9	31
292	Understanding industrial safety: Comparing Fault tree, Bayesian network, and FRAM approaches. Journal of Loss Prevention in the Process Industries, 2017, 45, 88-101.	1.7	57
293	Experimental evaluation of control performance of MPC as a regulatory controller. ISA Transactions, 2017, 70, 512-520.	3.1	15
294	Pitting Degradation Modeling of Ocean Steel Structures Using Bayesian Network. Journal of Offshore Mechanics and Arctic Engineering, 2017, 139, .	0.6	18
295	Fire impact assessment in FLNG processing facilities using Computational Fluid Dynamics (CFD). Fire Safety Journal, 2017, 92, 42-52.	1.4	48
296	Combination of KPCA and causality analysis for root cause diagnosis of industrial process fault. Canadian Journal of Chemical Engineering, 2017, 95, 1497-1509.	0.9	22
297	Aquatic ecotoxicological models and their applicability in Arctic regions. Marine Pollution Bulletin, 2017, 120, 428-437.	2.3	3
298	Demonstration of increased corrosion activity for insulated pipe systems using a simplified electrochemical potential noise method. Journal of Loss Prevention in the Process Industries, 2017, 47, 189-202.	1.7	10
299	Management of TENORMs produced during oil and gas operation. Journal of Loss Prevention in the Process Industries, 2017, 47, 161-168.	1.7	9
300	Rare Event Analysis Considering Data and Model Uncertainty. ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part B: Mechanical Engineering, 2017, 3, .	0.7	10
301	Semiparametric PCA and bayesian network based process fault diagnosis technique. Canadian Journal of Chemical Engineering, 2017, 95, 1800-1816.	0.9	23
302	Probabilistic Methods for Predicting the Remaining Life of Offshore Pipelines. Journal of Pressure Vessel Technology, Transactions of the ASME, 2017, 139, .	0.4	3
303	Major accident modelling using spare data. Chemical Engineering Research and Design, 2017, 106, 52-59.	2.7	57
304	Real time risk analysis of kick detection: Testing and validation. Reliability Engineering and System Safety, 2017, 161, 25-37.	5.1	43
305	Failure probability analysis of the urban buried gas pipelines using Bayesian networks. Chemical Engineering Research and Design, 2017, 111, 678-686.	2.7	104
306	Human performance data collected in a virtual environment. Data in Brief, 2017, 15, 213-215.	0.5	1

#	Article	IF	Citations
307	Dynamic failure analysis of process systems using neural networks. Chemical Engineering Research and Design, 2017, 111, 529-543.	2.7	66
308	Economic risk analysis of pitting corrosion in process facilities. International Journal of Pressure Vessels and Piping, 2017, 157, 51-62.	1.2	36
309	Unscented Kalman Filter trained neural networks based rudder roll stabilization system for ship in waves. Applied Ocean Research, 2017, 68, 26-38.	1.8	38
310	Probing Surface Functionality on Amorphous Carbons Using X-ray Photoelectron Spectroscopy of Bound Metal lons. Journal of Physical Chemistry C, 2017, 121, 26300-26307.	1.5	8
311	Development of a human reliability assessment technique for the maintenance procedures of marine and offshore operations. Journal of Loss Prevention in the Process Industries, 2017, 50, 416-428.	1.7	69
312	Dynamic hazard identification and scenario mapping using Bayesian network. Chemical Engineering Research and Design, 2017, 105, 143-155.	2.7	81
313	Development of a monograph for human error likelihood assessment in marine operations. Safety Science, 2017, 91, 33-39.	2.6	61
314	Kinetic modeling and dynamic analysis of simultaneous saccharification and fermentation of cellulose to bioethanol. Energy Conversion and Management, 2017, 141, 236-243.	4.4	21
315	Functional quantitative security risk analysis (QSRA) to assist in protecting critical process infrastructure. Reliability Engineering and System Safety, 2017, 157, 23-34.	5.1	41
316	A network based approach to envisage potential accidents in offshore process facilities. Process Safety Progress, 2017, 36, 178-191.	0.4	23
317	Prioritizing safety critical human and organizational factors of EER systems of offshore installations in a harsh environment. Safety Science, 2017, 95, 171-181.	2.6	30
318	Corrosion induced failure analysis of subsea pipelines. Reliability Engineering and System Safety, 2017, 159, 214-222.	5.1	130
319	Assessing the safety effects of cooperative intelligent transport systems: A bowtie analysis approach. Accident Analysis and Prevention, 2017, 99, 125-141.	3.0	36
320	Risk-based maintenance planning of subsea pipelines through fatigue crack growth monitoring. Engineering Failure Analysis, 2017, 79, 928-939.	1.8	78
321	Multi-phase classification by a least-squares support vector machine approach in tomography images of geological samples. Solid Earth, 2016, 7, 481-492.	1.2	14
322	Dynamic risk-based maintenance for offshore processing facility. Process Safety Progress, 2016, 35, 399-406.	0.4	37
323	Determination of Human Error Probabilities for the Maintenance Operations of Marine Engines. Journal of Ship Production and Design, 2016, 32, 226-234.	0.2	15
324	Risk-based winterization to prevent hydrate formation in northern harsh environment. Ocean Engineering, 2016, 119, 208-216.	1.9	5

#	Article	IF	Citations
325	Process accident model considering dependency among contributory factors. Chemical Engineering Research and Design, 2016, 102, 633-647.	2.7	46
326	Layout Optimization of a Floating Liquefied Natural Gas Facility Using Inherent Safety Principles. Journal of Offshore Mechanics and Arctic Engineering, 2016, 138, .	0.6	10
327	Development of an integrated tool for risk analysis of drilling operations. Chemical Engineering Research and Design, 2016, 102, 421-430.	2.7	39
328	Dynamic safety analysis of process systems using nonlinear and non-sequential accident model. Chemical Engineering Research and Design, 2016, 111, 169-183.	2.7	48
329	The importance of public participation in legislation of TENORM risk management in the oil and gas industry. Chemical Engineering Research and Design, 2016, 102, 606-614.	2.7	17
330	Availability analysis of safety critical systems using advanced fault tree and stochastic Petri net formalisms. Journal of Loss Prevention in the Process Industries, 2016, 44, 193-203.	1.7	57
331	Real-time monitoring and management of offshore process system integrity. Current Opinion in Chemical Engineering, 2016, 14, 61-71.	3.8	18
332	Dynamic fugacity model for accidental oil release during Arctic shipping. Marine Pollution Bulletin, 2016, 111, 347-353.	2.3	18
333	Abnormal situation management for smart chemical process operation. Current Opinion in Chemical Engineering, 2016, 14, 49-55.	3.8	36
334	Why major accidents are still occurring. Current Opinion in Chemical Engineering, 2016, 14, 1-8.	3.8	48
335	SVAPP methodology: A predictive security vulnerability assessment modeling method. Journal of Loss Prevention in the Process Industries, 2016, 43, 397-413.	1.7	21
336	Dynamic risk management: a contemporary approach to process safety management. Current Opinion in Chemical Engineering, 2016, 14, 9-17.	3.8	129
337	Dispersion modelling and analysis of hydrogen fuel gas released in an enclosed area: A CFD-based approach. Fuel, 2016, 184, 192-201.	3.4	55
338	Probabilistic Performance Assessment of Fiber Optic Leak Detection Systems. Journal of Offshore Mechanics and Arctic Engineering, 2016, 138, .	0.6	1
339	Riskâ€based process system monitoring using selfâ€organizing map integrated with loss functions. Canadian Journal of Chemical Engineering, 2016, 94, 1295-1307.	0.9	15
340	Vulnerability analysis of process plants subject to domino effects. Reliability Engineering and System Safety, 2016, 154, 127-136.	5.1	84
341	Application of loss functions in process economic risk assessment. Chemical Engineering Research and Design, 2016, 111, 371-386.	2.7	23
342	Modeling oil weathering and transport in sea ice. Marine Pollution Bulletin, 2016, 107, 206-215.	2.3	35

#	Article	IF	Citations
343	Retrospective risk analysis and controls for Semabla grain storage hybrid mixture explosion. Chemical Engineering Research and Design, 2016, 100, 49-64.	2.7	22
344	Towards dynamic risk analysis: A review of the risk assessment approach and its limitations in the chemical process industry. Safety Science, 2016, 89, 77-93.	2.6	206
345	Multivariate probabilistic safety analysis of process facilities using the Copula Bayesian Network model. Computers and Chemical Engineering, 2016, 93, 128-142.	2.0	51
346	Availability analysis of a LNG processing plant using the Markov process. Journal of Quality in Maintenance Engineering, 2016, 22, 302-320.	1.0	6
347	A sparse PCA for nonlinear fault diagnosis and robust feature discovery of industrial processes. AICHE Journal, 2016, 62, 1494-1513.	1.8	65
348	An Alternative Formulation of PCA for Process Monitoring Using Distance Correlation. Industrial & Engineering Chemistry Research, 2016, 55, 656-669.	1.8	35
349	Domino effect analysis of dust explosions using Bayesian networks. Chemical Engineering Research and Design, 2016, 100, 108-116.	2.7	64
350	Risk-based safety analysis of well integrity operations. Safety Science, 2016, 84, 149-160.	2.6	51
351	Offshore produced water management: A review of current practice and challenges in harsh/Arctic environments. Marine Pollution Bulletin, 2016, 104, 7-19.	2.3	98
352	Dynamic quantitative operational risk assessment of chemical processes. Chemical Engineering Science, 2016, 142, 62-78.	1.9	34
353	Monitoring of down-hole parameters for early kick detection. Journal of Loss Prevention in the Process Industries, 2016, 40, 43-54.	1.7	53
354	Dynamic occupational risk model for offshore operations in harsh environments. Reliability Engineering and System Safety, 2016, 150, 58-64.	5.1	42
355	Assessing offshore emergency evacuation behavior in a virtual environment using a Bayesian Network approach. Reliability Engineering and System Safety, 2016, 152, 28-37.	5.1	59
356	Scenario-based risk assessment of TENORM waste disposal options in oil and gas industry. Journal of Loss Prevention in the Process Industries, 2016, 40, 55-66.	1.7	19
357	A risk-based shutdown inspection and maintenance interval estimation considering human error. Chemical Engineering Research and Design, 2016, 100, 9-21.	2.7	61
358	A state-of-the-art review of fate and transport of oil spills in open and ice-covered water. Ocean Engineering, 2016, 119, 233-248.	1.9	119
359	Technologically Enhanced Naturally Occurring Radioactive Materials in oil and gas production: A silent killer. Chemical Engineering Research and Design, 2016, 99, 237-247.	2.7	33
360	Processing of rock core microtomography images: Using seven different machine learning algorithms. Computers and Geosciences, 2016, 86, 120-128.	2.0	80

#	Article	IF	CITATIONS
361	Process design and probabilistic economic risk analysis of bio-diesel production. Sustainable Production and Consumption, 2016, 5, 1-15.	5 . 7	30
362	A predictive approach to fitness-for-service assessment of pitting corrosion. International Journal of Pressure Vessels and Piping, 2016, 137, 13-21.	1.2	19
363	Process simulation and life cycle analysis of biodiesel production. Renewable Energy, 2016, 85, 945-952.	4.3	118
364	Risk-based Winterization on a North Atlantic-based Ferry Design. Journal of Ship Production and Design, 2016, 32, 99-109.	0.2	3
365	A risk-based approach to developing design temperatures for vessels operating in low temperature environments. Ocean Engineering, 2015, 108, 813-819.	1.9	17
366	Risk-Based Evaluation of Subsea Pipeline Leak Detection Technologies. , 2015, , .		2
367	Failure Analysis of the Tripping Operation and its Impact on Well Control. , 2015, , .		2
368	Risk-based warning system design methodology for multimode processes. IFAC-PapersOnLine, 2015, 48, 663-668.	0.5	1
369	Bayesian method for event-based alarm annunciation. IFAC-PapersOnLine, 2015, 48, 832-837.	0.5	4
370	Correlation and Dependency in Multivariate Process Risk Assessment. IFAC-PapersOnLine, 2015, 48, 1339-1344.	0.5	10
371	A Barrier Based Methodology to Assess Site Security Risk. , 2015, , .		3
372	Probabilistic modeling of business interruption and reputational losses for process facilities. Process Safety Progress, 2015, 34, 373-382.	0.4	12
373	Dynamic Risk Assessment of a Nonlinear Nonâ€Gaussian System Using a Particle Filter and Detailed Consequence Analysis. Canadian Journal of Chemical Engineering, 2015, 93, 1201-1211.	0.9	20
374	Assessing Evacuation Operation Performance in Harsh Environments., 2015,,.		4
375	Major Accidents (Gray Swans) Likelihood Modeling Using Accident Precursors and Approximate Reasoning. Risk Analysis, 2015, 35, 1336-1347.	1.5	20
376	Safety challenges in harsh environments: Lessons learned. Process Safety Progress, 2015, 34, 191-195.	0.4	32
377	An Accident Model for Arctic Shipping. , 2015, , .		1
378	An Approximate Modelling Method for Industrial l-lysine Fermentation Process. Computer Aided Chemical Engineering, 2015, , 461-466.	0.3	1

#	Article	IF	CITATIONS
379	Coupling of advanced techniques for dynamic risk management. Journal of Risk Research, 2015, 18, 910-930.	1.4	24
380	Improved oil recovery using CO2 as an injection medium: a detailed analysis. Journal of Petroleum Exploration and Production, 2015, 5, 241-254.	1.2	8
381	A multi-constrained maintenance scheduling optimization model for a hydrocarbon processing facility. Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability, 2015, 229, 151-168.	0.6	4
382	Risk-based maintenance and remaining life assessment for gas turbines. Journal of Quality in Maintenance Engineering, 2015, 21, 100-111.	1.0	4
383	Delay risk analysis of ship sailing the northern sea route. Ship Technology Research, 2015, 62, 26-35.	1.1	25
384	Probability of Detection and False Detection for Subsea Leak Detection Systems: Model and Analysis. Journal of Failure Analysis and Prevention, 2015, 15, 873-882.	0.5	6
385	Grey Model for Accident Prediction in Data-Scarce Environment. , 2015, , 411-418.		0
386	Inherent Safety Aspects for Layout Design of a Floating LNG Facility., 2015,,.		2
387	Multiphase Hydrate Induction Experiment in a Subsea Pipeline. , 2015, , .		0
388	A risk-based methodology to estimate shutdown interval considering system availability. Process Safety Progress, 2015, 34, 267-279.	0.4	12
389	Life Cycle Assessment of Bioethanol Production from Woodchips with Modifications in the Pretreatment Process. Applied Biochemistry and Biotechnology, 2015, 175, 1080-1091.	1.4	12
390	LNG pool fire simulation for domino effect analysis. Reliability Engineering and System Safety, 2015, 143, 19-29.	5.1	70
391	An integrated method for human error probability assessment during the maintenance of offshore facilities. Chemical Engineering Research and Design, 2015, 94, 172-179.	2.7	76
392	Modified Independent Component Analysis and Bayesian Network-Based Two-Stage Fault Diagnosis of Process Operations. Industrial & Engineering Chemistry Research, 2015, 54, 2724-2742.	1.8	73
393	Dust explosions: A threat to the process industries. Chemical Engineering Research and Design, 2015, 98, 57-71.	2.7	167
394	Design of Scenario-Based Early Warning System for Process Operations. Industrial & Engineering Chemistry Research, 2015, 54, 8255-8265.	1.8	16
395	Loss scenario analysis and loss aggregation for process facilities. Chemical Engineering Science, 2015, 128, 119-129.	1.9	27
396	Modelling of pitting corrosion in marine and offshore steel structures – A technical review. Journal of Loss Prevention in the Process Industries, 2015, 37, 39-62.	1.7	305

#	Article	IF	Citations
397	Methods and models in process safety and risk management: Past, present and future. Chemical Engineering Research and Design, 2015, 98, 116-147.	2.7	388
398	Risk assessment of rare events. Chemical Engineering Research and Design, 2015, 98, 102-108.	2.7	50
399	Risk assessment of offshore crude oil pipeline failure. Journal of Loss Prevention in the Process Industries, 2015, 37, 101-109.	1.7	81
400	Operational risk assessment: A case of the Bhopal disaster. Chemical Engineering Research and Design, 2015, 97, 70-79.	2.7	45
401	Assessment of domino effect: State of the art and research Needs. Reliability Engineering and System Safety, 2015, 143, 3-18.	5.1	107
402	Safety and risk analysis of managed pressure drilling operation using Bayesian network. Safety Science, 2015, 76, 133-144.	2.6	147
403	Risk-based fault detection using Self-Organizing Map. Reliability Engineering and System Safety, 2015, 139, 82-96.	5.1	41
404	System availability enhancement using computational intelligence–based decision tree predictive model. Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability, 2015, 229, 612-626.	0.6	1
405	Nonlinear Gaussian Belief Network based fault diagnosis for industrial processes. Journal of Process Control, 2015, 35, 178-200.	1.7	47
406	Network based approach for predictive accident modelling. Safety Science, 2015, 80, 274-287.	2.6	39
407	A probabilistic multivariate method for fault diagnosis of industrial processes. Chemical Engineering Research and Design, 2015, 104, 306-318.	2.7	34
408	Operational loss modelling for process facilities using multivariate loss functions. Chemical Engineering Research and Design, 2015, 104, 333-345.	2.7	17
409	Probabilistic estimation of hydrate formation. Journal of Petroleum Science and Engineering, 2015, 135, 32-38.	2.1	19
410	Risk analysis of deepwater drilling operations using Bayesian network. Journal of Loss Prevention in the Process Industries, 2015, 38, 11-23.	1.7	161
411	Risk-based optimal safety measure allocation for dust explosions. Safety Science, 2015, 74, 79-92.	2.6	40
412	Development of Economic Consequence Methodology for Process Risk Analysis. Risk Analysis, 2015, 35, 713-731.	1.5	24
413	Modelling of fire risks in an offshore facility. Fire Safety Journal, 2015, 71, 79-85.	1.4	45
414	Experimental design to study corrosion under insulation in harsh marine environments. Journal of Loss Prevention in the Process Industries, 2015, 33, 39-51.	1.7	48

#	Article	IF	Citations
415	Multimedia fate modeling of oil spills in ice-infested waters: An exploration of the feasibility of fugacity-based approach. Chemical Engineering Research and Design, 2015, 93, 206-217.	2.7	23
416	Risk Analysis of Dust Explosion Scenarios Using Bayesian Networks. Risk Analysis, 2015, 35, 278-291.	1.5	85
417	Alternative Prediction Models for Data Scarce Environment. Computer Aided Chemical Engineering, 2015, 37, 665-670.	0.3	2
418	Formulation and Analysis of the Probability of Detection and False Detection for Subsea Leak Detection Systems. , 2014, , .		3
419	Application of Probabilistic Methods for Predicting the Remaining Life of Offshore Pipelines. , 2014, , .		1
420	Probabilistic Performance Assessment of Fiber Optic Leak Detection Systems. , 2014, , .		0
421	Estimating design temperatures in Arctic environments: A new approach. , 2014, , .		2
422	Conceptual framework for an event-based plant alarm system. , 2014, , .		3
423	Loss functions and their applications in process safety assessment. Process Safety Progress, 2014, 33, 285-291.	0.4	29
424	Risk Management of Domino Effects Considering Dynamic Consequence Analysis. Risk Analysis, 2014, 34, 1128-1138.	1.5	73
425	A risk-based availability estimation using Markov method. International Journal of Quality and Reliability Management, 2014, 31, 106-128.	1.3	22
426	Effects of Cold Environments on Human Reliability Assessment in Offshore Oil and Gas Facilities. Human Factors, 2014, 56, 825-839.	2.1	44
427	Quantitative risk-based ranking of chemicals considering hazardous thermal reactions. Journal of Chemical Health and Safety, 2014, 21, 27-38.	1.1	12
428	Developing a novel methodology for ecological risk assessment of thiosalts. Stochastic Environmental Research and Risk Assessment, 2014, 28, 383-391.	1.9	11
429	Uncertainty-Driven Characterization of Climate Change Effects on Drought Frequency Using Enhanced SPI. Water Resources Management, 2014, 28, 15-40.	1.9	15
430	Risk-based operational performance analysis using loss functions. Chemical Engineering Science, 2014, 116, 99-108.	1.9	27
431	Comparison of Micro X-ray Computer Tomography Image Segmentation Methods: Artificial Neural Networks Versus Least Square Support Vector Machine. Lecture Notes in Earth System Sciences, 2014, , 141-145.	0.5	O
432	Improving safety and availability of complex systems using a risk-based failure assessment approach. Journal of Loss Prevention in the Process Industries, 2014, 32, 218-229.	1.7	9

#	Article	IF	CITATIONS
433	A framework to estimate the risk-based shutdown interval for a processing plant. Journal of Loss Prevention in the Process Industries, 2014, 32, 18-29.	1.7	32
434	Self-Organizing Map Based Fault Diagnosis Technique for Non-Gaussian Processes. Industrial & Engineering Chemistry Research, 2014, 53, 8831-8843.	1.8	43
435	Accident modelling and analysis in process industries. Journal of Loss Prevention in the Process Industries, 2014, 32, 319-334.	1.7	75
436	A virtual experimental technique for data collection for a Bayesian network approach to human reliability analysis. Reliability Engineering and System Safety, 2014, 132, 1-8.	5.1	54
437	Early Warning System for Chemical Processes with Time Delay and Limited Actuator Capacity. Industrial & Delay Engineering Chemistry Research, 2014, 53, 4763-4772.	1.8	11
438	Risk-based process plant design considering inherent safety. Safety Science, 2014, 70, 438-464.	2.6	84
439	Probabilistic risk assessment of major accidents: application to offshore blowouts in the Gulf of Mexico. Natural Hazards, 2014, 74, 1759-1771.	1.6	41
440	A model to assess dust explosion occurrence probability. Journal of Hazardous Materials, 2014, 268, 140-149.	6. 5	22
441	Introduction to special issue on "European Process Safety Pioneers― Journal of Loss Prevention in the Process Industries, 2014, 28, 1.	1.7	2
442	Dynamic approach to risk management: Application to the Hoeganaes metal dust accidents. Chemical Engineering Research and Design, 2014, 92, 669-679.	2.7	68
443	Industry specific dust explosion likelihood assessment model with case studies. Journal of Chemical Health and Safety, 2014, 21, 13-27.	1.1	8
444	Dynamic safety risk analysis of offshore drilling. Journal of Loss Prevention in the Process Industries, 2014, 30, 74-85.	1.7	184
445	On the application of near accident data to risk analysis of major accidents. Reliability Engineering and System Safety, 2014, 126, 116-125.	5.1	116
446	Combustion products toxicity risk assessment in an offshore installation. Chemical Engineering Research and Design, 2014, 92, 616-624.	2.7	29
447	Development of an organizational framework for studying dust explosion phenomena. Journal of Loss Prevention in the Process Industries, 2014, 30, 228-235.	1.7	10
448	Human and organizational factors assessment of the evacuation operation of BP Deepwater Horizon accident. Safety Science, 2014, 70, 41-49.	2.6	40
449	Determination of human error probabilities in maintenance procedures of a pump. Chemical Engineering Research and Design, 2014, 92, 131-141.	2.7	66
450	Scientific data exchange: a schema for HDF5-based storage of raw and analyzed data. Journal of Synchrotron Radiation, 2014, 21, 1224-1230.	1.0	86

#	Article	IF	Citations
451	Scenario Based Risk Management for Arctic Shipping and Operations. , 2014, , .		4
452	Transportation Risk Analysis Framework for Arctic Waters. , 2014, , .		11
453	Risk Based Assessment of Gas Turbines in Pipeline Service. , 2014, , .		0
454	Influence of liquid and vapourized solvents on explosibility of pharmaceutical excipient dusts. Process Safety Progress, 2014, 33, 374-379.	0.4	10
455	Domino Effect Analysis Using Bayesian Networks. Risk Analysis, 2013, 33, 292-306.	1.5	204
456	Explosibility of polyamide and polyester fibers. Journal of Loss Prevention in the Process Industries, 2013, 26, 1627-1633.	1.7	21
457	Human reliability assessment during offshore emergency conditions. Safety Science, 2013, 59, 19-27.	2.6	93
458	Explosion modeling and analysis of BP Deepwater Horizon accident. Safety Science, 2013, 57, 150-160.	2.6	64
459	Analysis of pitting corrosion on steel under insulation in marine environments. Journal of Loss Prevention in the Process Industries, 2013, 26, 1466-1483.	1.7	83
460	An optimal level of dust explosion risk management: Framework andÂapplication. Journal of Loss Prevention in the Process Industries, 2013, 26, 1530-1541.	1.7	29
461	The role of human error in risk analysis: Application to pre- and post-maintenance procedures of process facilities. Reliability Engineering and System Safety, 2013, 119, 251-258.	5.1	102
462	An integrated approach for fire and explosion consequence modelling. Fire Safety Journal, 2013, 61, 324-337.	1.4	76
463	Precursor-based hierarchical Bayesian approach for rare event frequency estimation: A case of oil spill accidents. Chemical Engineering Research and Design, 2013, 91, 333-342.	2.7	74
464	A Simulink model of an active island detection technique for inverter-based distributed generation. , 2013, , .		3
465	Analyzing system safety and risks under uncertainty using a bow-tie diagram: An innovative approach. Chemical Engineering Research and Design, 2013, 91, 1-18.	2.7	166
466	Dynamic safety analysis of process systems by mapping bow-tie into Bayesian network. Chemical Engineering Research and Design, 2013, 91, 46-53.	2.7	429
467	Explosibility of micron- and nano-size titanium powders. Journal of Loss Prevention in the Process Industries, 2013, 26, 1646-1654.	1.7	76
468	Modelling of the effect of size on flocculent dust explosions. Journal of Loss Prevention in the Process Industries, 2013, 26, 1634-1638.	1.7	19

#	Article	IF	CITATIONS
469	Dynamic risk assessment and fault detection using a multivariate technique. Process Safety Progress, 2013, 32, 365-375.	0.4	35
470	Risk-Based Design of Safety Measures To Prevent and Mitigate Dust Explosion Hazards. Industrial & Engineering Chemistry Research, 2013, 52, 18095-18108.	1.8	33
471	Quantifying the effect of strong ignition sources on particle preconditioning and distribution in the 20-L chamber. Journal of Loss Prevention in the Process Industries, 2013, 26, 1574-1582.	1.7	14
472	A quantitative risk management framework for dust and hybrid mixture explosions. Journal of Loss Prevention in the Process Industries, 2013, 26, 283-289.	1.7	31
473	Quantitative risk analysis of offshore drilling operations: A Bayesian approach. Safety Science, 2013, 57, 108-117.	2.6	309
474	Simultaneous segmentation and beam-hardening correction in computed microtomography of rock cores. Computers and Geosciences, 2013, 56, 142-150.	2.0	25
475	Risk-based design of process systems using discrete-time Bayesian networks. Reliability Engineering and System Safety, 2013, 109, 5-17.	5.1	114
476	A rough set-based game theoretical approach for environmental decision-making: A case of offshore oil and gas operations. Chemical Engineering Research and Design, 2013, 91, 172-182.	2.7	10
477	Risk based integrity modeling of offshore process components suffering stochastic degradation. Journal of Quality in Maintenance Engineering, 2013, 19, 157-180.	1.0	24
478	Overpressure Effects., 2013,, 43-69.		2
478	Overpressure Effects. , 2013, , 43-69. Quantitative Assessment of Risk Caused by Domino Accidents. , 2013, , 208-228.		2
		0.2	
479	Quantitative Assessment of Risk Caused by Domino Accidents. , 2013, , 208-228. Risk-based Winterization for Vessels Operations in Arctic Environments. Journal of Ship Production	0.2	2
479 480	Quantitative Assessment of Risk Caused by Domino Accidents., 2013,, 208-228. Risk-based Winterization for Vessels Operations in Arctic Environments. Journal of Ship Production and Design, 2013, 29, 199-210. Accident modeling and risk assessment framework for safety critical decision-making: application to deepwater drilling operation. Proceedings of the Institution of Mechanical Engineers, Part O: Journal		13
479 480 481	Quantitative Assessment of Risk Caused by Domino Accidents., 2013,, 208-228. Risk-based Winterization for Vessels Operations in Arctic Environments. Journal of Ship Production and Design, 2013, 29, 199-210. Accident modeling and risk assessment framework for safety critical decision-making: application to deepwater drilling operation. Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability, 2013, 227, 86-105. The Importance of Thiosalts Speciation: Review of Analytical Methods, Kinetics, and Treatment.	0.6	2 13 19
479 480 481 482	Quantitative Assessment of Risk Caused by Domino Accidents., 2013, , 208-228. Risk-based Winterization for Vessels Operations in Arctic Environments. Journal of Ship Production and Design, 2013, 29, 199-210. Accident modeling and risk assessment framework for safety critical decision-making: application to deepwater drilling operation. Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability, 2013, 227, 86-105. The Importance of Thiosalts Speciation: Review of Analytical Methods, Kinetics, and Treatment. Critical Reviews in Environmental Science and Technology, 2013, 43, 2013-2070.	0.6	2 13 19 34
479 480 481 482	Quantitative Assessment of Risk Caused by Domino Accidents., 2013,, 208-228. Risk-based Winterization for Vessels Operations in Arctic Environments. Journal of Ship Production and Design, 2013, 29, 199-210. Accident modeling and risk assessment framework for safety critical decision-making: application to deepwater drilling operation. Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability, 2013, 227, 86-105. The Importance of Thiosalts Speciation: Review of Analytical Methods, Kinetics, and Treatment. Critical Reviews in Environmental Science and Technology, 2013, 43, 2013-2070. Human Factor Risk Assessment During Emergency Condition in Harsh Environment., 2013, , . Risk-based Winterization for Vessels Operations in Arctic Environments. Journal of Ship Production	0.6 6.6	2 13 19 34 5

#	Article	IF	CITATIONS
487	Probabilistic Transgranular Stress Corrosion Cracking Analysis for Oil and Gas Pipelines. Journal of Pressure Vessel Technology, Transactions of the ASME, 2012, 134, .	0.4	6
488	Ranking Canadian universities: a quantitative approach for sustainability assessment using uD-SiM. International Journal of Sustainable Engineering, 2012, 5, 357-373.	1.9	6
489	Fugitive emissions in chemical processes: The assessment and prevention based on inherent and add-on approaches. Journal of Loss Prevention in the Process Industries, 2012, 25, 820-829.	1.7	18
490	Dust explosion risk moderation for flocculent dusts. Journal of Loss Prevention in the Process Industries, 2012, 25, 862-869.	1.7	45
491	Review of the Explosibility of Nontraditional Dusts. Industrial & Engineering Chemistry Research, 2012, 51, 7651-7655.	1.8	43
492	Dempster-Shafer Theory for Handling Conflict in Hydrological Data: Case of Snow Water Equivalent. Journal of Computing in Civil Engineering, 2012, 26, 434-447.	2.5	13
493	Risk-Based Inspection and Maintenance (RBIM) of Power Plants. Springer Series in Reliability Engineering, 2012, , 249-279.	0.3	1
494	Modeling of pool fires in cold regions. Fire Safety Journal, 2012, 48, 1-10.	1.4	5
495	Probability assessment of burst limit state due to internal corrosion. International Journal of Pressure Vessels and Piping, 2012, 89, 48-58.	1.2	71
496	Dynamic risk analysis using bow-tie approach. Reliability Engineering and System Safety, 2012, 104, 36-44.	5.1	280
497	Handling and updating uncertain information in bow-tie analysis. Journal of Loss Prevention in the Process Industries, 2012, 25, 8-19.	1.7	97
498	A methodology for calculating sample size to assess localized corrosion of process components. Journal of Loss Prevention in the Process Industries, 2012, 25, 70-80.	1.7	8
499	Bayesian sample size determination for inspection of general corrosion of process components. Journal of Loss Prevention in the Process Industries, 2012, 25, 218-223.	1.7	5
500	Risk-based shutdown management of LNG units. Journal of Loss Prevention in the Process Industries, 2012, 25, 159-165.	1.7	15
501	Accident modeling approach for safety assessment in an LNG processing facility. Journal of Loss Prevention in the Process Industries, 2012, 25, 414-423.	1.7	70
502	Risk-based asset integrity indicators. Journal of Loss Prevention in the Process Industries, 2012, 25, 544-554.	1.7	53
503	3D simulation of the permeability tensor in a soil aggregate on basis of nanotomographic imaging and LBE solver. Journal of Soils and Sediments, 2012, 12, 86-96.	1.5	73
504	Riskâ€based fault diagnosis and safety management for process systems. Process Safety Progress, 2011, 30, 6-17.	0.4	17

#	Article	IF	Citations
505	Paleolithic spread of Y-chromosomal lineage of tribes in eastern and northeastern India. Annals of Human Biology, 2011, 38, 736-746.	0.4	11
506	An Integrated Decision-Making Framework for Sustainability Assessment: A Case Study of Memorial University. Higher Education Policy, 2011, 24, 481-498.	1.3	12
507	Identification of the Cause of Variability of Probability of Failure for Burst Models Recommended by Codes/Standards. Journal of Pressure Vessel Technology, Transactions of the ASME, 2011, 133, .	0.4	11
508	Fault and Event Tree Analyses for Process Systems Risk Analysis: Uncertainty Handling Formulations. Risk Analysis, 2011, 31, 86-107.	1.5	182
509	A risk-based approach to design warning system for processing facilities. Chemical Engineering Research and Design, 2011, 89, 310-316.	2.7	39
510	Emission factor estimation for oil and gas facilities. Chemical Engineering Research and Design, 2011, 89, 295-299.	2.7	10
511	A review of drought indices. Environmental Reviews, 2011, 19, 333-349.	2.1	796
512	Kinetics and safety analysis of sulfide mineral self-heating. Journal of Thermal Analysis and Calorimetry, 2011, 106, 53-61.	2.0	13
513	A rough set-based quality function deployment (QFD) approach for environmental performance evaluation: a case of offshore oil and gas operations. Journal of Cleaner Production, 2011, 19, 1513-1526.	4.6	35
514	Knowledge, perceptions and myths regarding infertility among selected adult population in Pakistan: a cross-sectional study. BMC Public Health, 2011, 11, 760.	1.2	92
515	An analysis of CSB investigation reports concerning the hierarchy of controls. Process Safety Progress, 2011, 30, 261-265.	0.4	23
516	IECP $\hat{a} \in \ref{eq}$ an approach for integrated environmental and cost evaluation of process design alternatives and its application to evaluate different NOx prevention technologies in a 125 MW thermal power plant. Energy for Sustainable Development, 2011, 15, 61-68.	2.0	6
517	Uncertainty-based quantitative assessment of sustainability for higher education institutions. Journal of Cleaner Production, 2011, 19, 720-732.	4.6	52
518	Prioritization of environmental issues in offshore oil and gas operations: A hybrid approach using fuzzy inference system and fuzzy analytic hierarchy process. Chemical Engineering Research and Design, 2011, 89, 22-34.	2.7	71
519	SHIPP methodology: Predictive accident modeling approach. Part II. Validation with case study. Chemical Engineering Research and Design, 2011, 89, 75-88.	2.7	88
520	SHIPP methodology: Predictive accident modeling approach. Part I: Methodology and model description. Chemical Engineering Research and Design, 2011, 89, 151-164.	2.7	150
521	Safety analysis in process facilities: Comparison of fault tree and Bayesian network approaches. Reliability Engineering and System Safety, 2011, 96, 925-932.	5.1	552
522	Developing a quantitative tool for sustainability assessment of HEIs. International Journal of Sustainability in Higher Education, 2011, 12, 355-368.	1.6	44

#	Article	IF	CITATIONS
523	Development of riskâ€based process safety indicators. Process Safety Progress, 2010, 29, 133-143.	0.4	14
524	Agricultural application of life cycle iNdeX (LInX) for effective decision making. Journal of Cleaner Production, 2010, 18, 1703-1713.	4.6	9
525	SusDesign – An approach for a sustainable process system design and its application to a thermal power plant. Applied Thermal Engineering, 2010, 30, 1896-1913.	3.0	12
526	Modelling of BP Texas City refinery accident using dynamic risk assessment approach. Chemical Engineering Research and Design, 2010, 88, 191-199.	2.7	122
527	Reliability based inspection of nickel-based alloy welds in boiling water reactor environment. Reliability Engineering and System Safety, 2010, 95, 494-498.	5.1	4
528	Thermal stability investigation of sulfide minerals in DSC. Journal of Hazardous Materials, 2010, 178, 814-822.	6.5	37
529	Advanced kinetics for calorimetric techniques and thermal stability screening of sulfide minerals. Thermochimica Acta, 2010, 501, 35-45.	1.2	8
530	The Development of Posterior Probability Models in Risk-Based Integrity Modeling. Risk Analysis, 2010, 30, 400-420.	1.5	18
531	ECOLOGICAL RISK-BASED PERFORMANCE EVALUATION OF A WASTE STABILIZATION POND. Environmental Engineering and Management Journal, 2010, 9, 757-764.	0.2	4
532	Risk Based Integrity Modeling of Gas Processing Facilities using Bayesian Analysis., 2009,, 297-306.		4
533	Risk Assessment and Management Using Accident Precursors Modeling in Offshore Process Operation. , 2009, , .		3
534	Prediction of Minerals Producing Acid Mine Drainage Using a Computer-Assisted Thermodynamic Chemical Equilibrium Model. Mine Water and the Environment, 2009, 28, 74-78.	0.9	15
535	The selection of corrosion prior distributions for risk based integrity modeling. Stochastic Environmental Research and Risk Assessment, 2009, 23, 793-809.	1.9	17
536	ExpHAZOP+: Knowledge-based expert system to conduct automated HAZOP analysis. Journal of Loss Prevention in the Process Industries, 2009, 22, 373-380.	1.7	26
537	Dynamic risk assessment using failure assessment and Bayesian theory. Journal of Loss Prevention in the Process Industries, 2009, 22, 600-606.	1.7	195
538	Application of inherent safety principles to dust explosion prevention and mitigation. Chemical Engineering Research and Design, 2009, 87, 35-39.	2.7	129
539	Methodology for computer aided fuzzy fault tree analysis. Chemical Engineering Research and Design, 2009, 87, 217-226.	2.7	120
540	Handling data uncertainties in event tree analysis. Chemical Engineering Research and Design, 2009, 87, 283-292.	2.7	90

#	Article	IF	CITATIONS
541	Presence of three different paternal lineages among North Indians: A study of 560 Y chromosomes. Annals of Human Biology, 2009, 36, 46-59.	0.4	22
542	Fatigue reliability analysis of deep water rigid marine risers associated with Morison-type wave loading. Stochastic Environmental Research and Risk Assessment, 2008, 22, 379-390.	1.9	23
543	Multimedia fate of oil spills in a marine environment—An integrated modelling approach. Chemical Engineering Research and Design, 2008, 86, 141-148.	2.7	37
544	Real-time fault diagnosis using knowledge-based expert system. Chemical Engineering Research and Design, 2008, 86, 55-71.	2.7	96
545	Sustainable development of process facilities: State-of-the-art review of pollution prevention frameworks. Journal of Hazardous Materials, 2008, 150, 4-20.	6.5	27
546	Safety assessment in plant layout design using indexing approach: Implementing inherent safety perspective. Journal of Hazardous Materials, 2008, 160, 100-109.	6.5	83
547	Safety assessment in plant layout design using indexing approach: Implementing inherent safety perspective. Journal of Hazardous Materials, 2008, 160, 110-121.	6.5	75
548	Subsea Release of Oil from a Riser: An Ecological Risk Assessment. Risk Analysis, 2008, 28, 1173-1196.	1.5	11
549	Effect of Sociocultural Cleavage on Genetic Differentiation: A Study from North India. Human Biology, 2008, 80, 271-286.	0.4	3
550	E-Green â^' A Robust Risk-Based Environmental Assessment Tool for Process Industries. Industrial & Engineering Chemistry Research, 2007, 46, 8787-8795.	1.8	18
551	North Indian Muslims: Enclaves of foreign DNA or Hindu converts?. American Journal of Physical Anthropology, 2007, 133, 1004-1012.	2.1	16
552	Modeling of BP Texas City refinery incident. Journal of Loss Prevention in the Process Industries, 2007, 20, 387-395.	1.7	44
553	Moderation of dust explosions. Journal of Loss Prevention in the Process Industries, 2007, 20, 675-687.	1.7	81
554	A model for estimating the probability of missile impact: Missiles originating from bursting horizontal cylindrical vessels. Process Safety Progress, 2007, 26, 129-139.	0.4	34
555	Incorporation of inherent safety principles in process safety management. Process Safety Progress, 2007, 26, 333-346.	0.4	73
556	Validation of an offshore occupational accident frequency prediction modelâ€"A practical demonstration using case studies. Process Safety Progress, 2006, 25, 160-171.	0.4	3
557	Risk-Based Integrity and Inspection Modeling (RBIIM) of Process Components/System. Risk Analysis, 2006, 26, 203-221.	1.5	41
558	Explosibility parameters for mixtures of pulverized fuel and ash. Journal of Loss Prevention in the Process Industries, 2006, 19, 142-148.	1.7	12

#	Article	IF	Citations
559	Offshore oil and gas occupational accidentsâ€"What is important?. Journal of Loss Prevention in the Process Industries, 2006, 19, 386-398.	1.7	20
560	Occupational accident modelsâ€"Where have we been and where are we going?. Journal of Loss Prevention in the Process Industries, 2006, 19, 664-682.	1.7	75
561	HEPI: A new tool for human error probability calculation for offshore operation. Safety Science, 2006, 44, 313-334.	2.6	83
562	An integrated approach for riskâ€based life cycle assessment and multiâ€criteria decisionâ€making. Business Process Management Journal, 2006, 12, 770-792.	2.4	43
563	Life Cycle Analysis of wind–fuel cell integrated system. Renewable Energy, 2005, 30, 157-177.	4.3	101
564	Dust explosion hazard of pulverized fuel carry-over. Journal of Hazardous Materials, 2005, 122, 23-30.	6.5	27
565	Development of a risk-based maintenance (RBM) strategy for a power-generating plant. Journal of Loss Prevention in the Process Industries, 2005, 18, 69-81.	1.7	147
566	I2SI: A comprehensive quantitative tool for inherent safety and cost evaluation. Journal of Loss Prevention in the Process Industries, 2005, 18, 310-326.	1.7	145
567	Revised fire consequence models for offshore quantitative risk assessment. Journal of Loss Prevention in the Process Industries, 2005, 18, 443-454.	1.7	59
568	Determination of human error probabilities for offshore platform musters. Journal of Loss Prevention in the Process Industries, 2005, 18, 488-501.	1.7	90
569	Evaluating offshore technologies for produced water management using GreenPro-l—a risk-based life cycle analysis for green and clean process selection and design. Computers and Chemical Engineering, 2005, 29, 1023-1039.	2.0	26
570	Revised estimates for continuous shoreline fumigation: a PDF approach. Journal of Hazardous Materials, 2005, 118, 53-65.	6.5	7
571	Risk-Based Prioritization of Air Pollution Monitoring Using Fuzzy Synthetic Evaluation Technique. Environmental Monitoring and Assessment, 2005, 105, 261-283.	1.3	60
572	Risk-based maintenance (RBM): A new approach for process plant inspection and maintenance. Process Safety Progress, 2004, 23, 252-265.	0.4	78
573	Integrated inherent safety index (I2SI): A tool for inherent safety evaluation. Process Safety Progress, 2004, 23, 136-148.	0.4	157
574	An inherent safety-based incident investigation methodology. Process Safety Progress, 2004, 23, 197-205.	0.4	35
575	An overview and analysis of site remediation technologies. Journal of Environmental Management, 2004, 71, 95-122.	3.8	692
576	Risk-based maintenance of ethylene oxide production facilities. Journal of Hazardous Materials, 2004, 108, 147-159.	6.5	97

#	Article	IF	CITATIONS
577	Water quality evaluation and trend analysis in selected watersheds of the Atlantic region of Canada. Environmental Monitoring and Assessment, 2003, 88, 221-248.	1.3	137
578	Risk-based maintenance (RBM): a quantitative approach for maintenance/inspection scheduling and planning. Journal of Loss Prevention in the Process Industries, 2003, 16, 561-573.	1.7	283
579	Landfarming operation of oily sludge in arid region—human health risk assessment. Journal of Hazardous Materials, 2003, 99, 287-302.	6.5	68
580	Evaluation of a petroleum hydrocarbon contaminated site for natural attenuation using â€~RBMNA' methodology. Environmental Modelling and Software, 2003, 18, 179-194.	1.9	24
581	Evaluation of available indices for inherently safer design options. Process Safety Progress, 2003, 22, 83-97.	0.4	53
582	How to Make Inherent Safety Practice a Reality. Canadian Journal of Chemical Engineering, 2003, 81, 2-16.	0.9	133
583	GreenPro-I: a risk-based life cycle assessment and decision-making methodology for process plant design. Environmental Modelling and Software, 2002, 17, 669-692.	1.9	81
584	Design and evaluation of safety measures using a newly proposed methodology "SCAP― Journal of Loss Prevention in the Process Industries, 2002, 15, 129-146.	1.7	34
585	Inherent safety in offshore oil and gas activities: a review of the present status and future directions. Journal of Loss Prevention in the Process Industries, 2002, 15, 279-289.	1.7	122
586	A criterion for developing credible accident scenarios for risk assessment. Journal of Loss Prevention in the Process Industries, 2002, 15, 467-475.	1.7	67
587	Risk-based process safety assessment and control measures design for offshore process facilities. Journal of Hazardous Materials, 2002, 94, 1-36.	6.5	93
588	Risk Assessment and Safety Evaluation Using Probabilistic Fault Tree Analysis. Human and Ecological Risk Assessment (HERA), 2001, 7, 1909-1927.	1.7	15
589	Effective design of greenbelts using mathematical models. Journal of Hazardous Materials, 2001, 81, 33-65.	6.5	28
590	Risk-based monitored natural attenuation â€" a case study. Journal of Hazardous Materials, 2001, 85, 243-272.	6.5	23
591	SCAP: a new methodology for safety management based on feedback from credible accident-probabilistic fault tree analysis system. Journal of Hazardous Materials, 2001, 87, 23-56.	6.5	29
592	GreenPro: a new methodology for cleaner and greener process design. Journal of Loss Prevention in the Process Industries, 2001, 14, 307-328.	1.7	33
593	An assessment of the likelihood of occurrence, and the damage potential of domino effect (chain of) Tj ETQq1 1 2001, 14, 283-306.	0.784314 1.7	rgBT /Over o
594	Risk analysis of a typical chemical industry using ORA procedure. Journal of Loss Prevention in the Process Industries, 2001, 14, 43-59.	1.7	80

#	Article	IF	Citations
595	Rapid risk assessment of a fertilizer industry using recently developed computer-automated tool TORAP. Journal of Loss Prevention in the Process Industries, 2001, 14, 413-427.	1.7	9
596	Towards automation of HAZOP with a new tool EXPERTOP. Environmental Modelling and Software, 2000, 15, 67-77.	1.9	33
597	Analytical simulation and PROFAT II: a new methodology and a computer automated tool for fault tree analysis in chemical process industries. Journal of Hazardous Materials, 2000, 75, 1-27.	6.5	88
598	TORAP— a new tool for conducting rapid risk-assessments in petroleum refineries and petrochemical industries. Applied Energy, 2000, 65, 187-210.	5.1	10
599	Cushioning the impact of toxic release from runaway industrial accidents with greenbelts. Journal of Loss Prevention in the Process Industries, 2000, 13, 109-124.	1.7	11
600	Attenuation of Gaseous Pollutants by Greenbelts. Environmental Monitoring and Assessment, 2000, 64, 457-475.	1.3	29
601	PROFAT: A user friendly system for probabilistic fault tree analysis. Process Safety Progress, 1999, 18, 42-49.	0.4	34
602	The world's worst industrial accident of the 1990s what happened and what might have been: A quantitative study. Process Safety Progress, 1999, 18, 135-145.	0.4	72
603	HAZDIG: a new software package for assessing the risks of accidental release of toxic chemicals. Journal of Loss Prevention in the Process Industries, 1999, 12, 167-181.	1.7	22
604	Major accidents in process industries and an analysis of causes and consequences. Journal of Loss Prevention in the Process Industries, 1999, 12, 361-378.	1.7	267
605	TORAPâ€"a new tool for conducting rapid risk assessment in petroleum refineries and petrochemical industries. Journal of Loss Prevention in the Process Industries, 1999, 12, 299-313.	1.7	8
606	Assessment of risks posed by chemical industriesâ€"application of a new computer automated tool maxcred -III. Journal of Loss Prevention in the Process Industries, 1999, 12, 455-469.	1.7	65
607	Accident simulation as a tool for assessing and controlling environmental risks in chemical process industries: A case study. Korean Journal of Chemical Engineering, 1998, 15, 124-135.	1.2	12
608	Techniques and methodologies for risk analysis in chemical process industries. Journal of Loss Prevention in the Process Industries, 1998, 11, 261-277.	1.7	229
609	MAXCRED – a new software package for rapid risk assessment in chemical process industries. Environmental Modelling and Software, 1998, 14, 11-25.	1.9	60
610	DOMIFFECT (DOMIno eFFECT): user-friendly software for domino effect analysis. Environmental Modelling and Software, 1998, 13, 163-177.	1.9	117
611	Models for domino effect analysis in chemical process industries. Process Safety Progress, 1998, 17, 107-123.	0.4	201
612	Multivariate hazard identification and ranking system. Process Safety Progress, 1998, 17, 157-170.	0.4	136

#	Article	IF	Citations
613	Risk analysis of an epichlorohydrin manufacturing industry using the new computer automated tool MAXCRED. Journal of Loss Prevention in the Process Industries, 1997, 10, 91-100.	1.7	33
614	OptHAZOP—an effective and optimum approach for HAZOP study. Journal of Loss Prevention in the Process Industries, 1997, 10, 191-204.	1.7	65
615	Risk analysis of a chloralkali industry situated in a populated area using the software package MAXCRED-II. Process Safety Progress, 1997, 16, 172-184.	0.4	29
616	Mathematical model for HAZOP study time estimation. Journal of Loss Prevention in the Process Industries, 1997, 10, 249-257.	1.7	27
617	TOPHAZOP: a knowledge-based software tool for conducting HAZOP in a rapid, efficient yet inexpensive manner. Journal of Loss Prevention in the Process Industries, 1997, 10, 333-343.	1.7	49
618	Evolving extreme events caused by climate change: A tail based Bayesian approach for extreme event risk analysis. Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability, 0, , 1748006X2199103.	0.6	2
619	A new assessment of perforation skin factor for vertical perforated wells in near-wellbore region. Journal of Petroleum Exploration and Production, 0, , $1.$	1.2	2
620	Efficiency, safety, and reliability analysis of turbocharging in a large container vessel. Process Safety Progress, 0, , .	0.4	1
621	The Performance of Zn-Ni Alloy Coating Electrodeposited from Stabilized Bath. Materials Science Forum, 0, 1058, 149-155.	0.3	0
622	An integrated health risk assessment with control banding for nanomaterials exposure. Process Safety Progress, 0, , .	0.4	1